首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Summary : We present the O2 binding properties of recombinant human serum albumin (rHSA) mutants complexed with an iron(II) protoporphyrin IX as a prosthetic heme group. Iron(III) protoporphyrin IX (hemin) is bound within subdomain IB of HSA with weak axial coordination by Tyr-161. In order to confer O2 binding capability to this naturally occurring hemoprotein: (i) a proximal histidine was introduced into position Ile-142; and (ii) the coordinated Tyr-161 was replaced with hydrophobic Leu using site-directed mutagenesis. It provided a recombinant HSA double-mutant [rHSA(I142H/Y161L) = rHSA(HL)]. The rHSA(HL)–heme formed a ferrous five-coordinate high-spin complex with axial ligation of His-142 under an Ar atmosphere. This artificial hemoprotein binds O2 at room temperature. Laser flash photolysis experiments demonstrated that O2 rebinidng to rHSA(HL)–heme displays monophasic kinetics, whereas the CO recombination process obeyed a double-exponential pattern. This might be attributable to the two different geometries of the axial imidazole coordination arising from the two orientations of the porphyrin plane in the heme pocket. The O2 binding affinity of rHSA(HL)–heme was considerably lower than those of R-state hemoglobin (Hb) and myoglobin (Mb), principally because of the high O2 dissociation rate constant. The third mutations have been introduced into the distal side of the heme (at position Leu-185 or Arg-186) to increase the O2 binidng affinity. The rHSA(HL/L185N)–heme showed high O2 binding affinity ( : 1 Torr), which is 18-fold greater than that of the original double mutant rHSA(HL)–heme and which is rather close to those of Hb (R-state) and Mb. Furthermore, replacement of polar Arg-186 with Leu or Phe adjusted the O2 binding affinity ( ) to 10 Torr, which is almost equivalent to value for human red blood cells.  相似文献   

2.
The binding properties of O2 and CO to recombinant human serum albumin (rHSA) mutants with a prosthetic heme group have been physicochemically and kinetically characterized. Iron(III) protoporphyrin IX (hemin) is bound in subdomain IB of wild-type rHSA [rHSA(wt)] with weak axial coordination by Tyr-161. The reduced ferrous rHSA(wt)-heme under an Ar atmosphere exists in an unusual mixture of four- and five-coordinate complexes and is immediately autoxidized by O2. To confer O2 binding capability on this naturally occurring hemoprotein, a proximal histidine was introduced into position Ile-142 or Leu-185 by site-directed mutagenesis. A single mutant (I142H) and three double mutants (I142H/Y161L, I142H/Y161F, and Y161L/L185H) were prepared. Both rHSA(I142H/Y161L)-heme and rHSA(I142H/Y161F)-heme formed ferrous five-N-coordinate high-spin complexes with axial ligation of His-142 under an Ar atmosphere. These artificial hemoproteins bind O2 at room temperature. Mutation at the other side of the porphyrin, Y161L/L185H, also allowed O2 binding to the heme. In contrast, the single mutant rHSA(I142H)-heme could not bind O2, suggesting that removal of Y161 is necessary to confer reversible O2 binding. Laser flash photolysis experiments showed that the kinetics of CO recombination with the rHSA(mutant)-heme were biphasic, whereas O2 rebinding exhibited monophasic kinetics. This could be due to the two different geometries of the axial imidazole coordination arising from the two orientations of the porphyrin plane in the heme pocket. The O2 binding affinities of the rHSA(mutant)-heme were significantly lower than those of hemoglobin and myoglobin, principally due to the high O2 dissociation rates. Changing Leu-161 to Phe-161 at the distal side increased the association rates of both O2 and CO, which resulted in enhanced binding affinity.  相似文献   

3.
We present the photophysical properties of complexes of recombinant human serum albumin (rHSA) with Zn(II)-protoporphyrin IX (ZnPP) and their activities in the photosensitized reduction of water to hydrogen (H2) using methyl viologen (MV2+) as an electron relay. The ZnPP is bound in subdomain IB of wild-type rHSA [rHSA(wt] by an axial coordination of Tyr-161 and, in the rHSA(I142H/Y161L) mutant [rHSA(His], by a His-142 coordination. Both the rHSA(wt)-ZnPP and rHSA(His)-ZnPP complexes showed a long-lived photoexcited triplet state with lifetimes (tauT) of 11 and 2.5 ms, respectively. The accommodation of ZnPP into the protein matrix efficiently eliminated the collisional triplet self-quenching process. The addition of a water-soluble electron acceptor, MV2+, resulted in a significant decrease in the triplet lifetime. The transition absorption spectrum revealed the oxidative quenching of rHSA-3ZnPP* by MV2+. The quenching rate constant (kq) and backward electron transfer rate constant (kb) were determined to be 1.4 x 10(7) and 4.7 x 10(8) M(-1) s(-1) for rHSA(wt)-ZnPP. In the presence of the colloidal PVA-Pt as a catalyst and triethanolamine (TEOA) as a sacrificial electron donor, the photosensitized reduction of water to H2 takes place. The efficiency of the photoproduction of H2 was greater than that of the system using the well-known organic chromophore, tetrakis(1-methylpyridinium-4-yl)porphinatozinc(II) (ZnTMPyP4+), under the same conditions.  相似文献   

4.
Human serum albumin (HSA) is the most abundant plasma protein in our bloodstream and serves as a transporter for small hydrophobic molecules such as fatty acids, bilirubin, and steroids. Hemin dissociated from methemoglobin is also bound within a narrow D-shaped cavity in subdomain IB of HSA. In terms of the general hydrophobicity of the alpha-helical pocket, HSA potentially has features similar to the heme-binding site of myoglobin (Mb) or hemoglobin (Hb). However, the reduced ferrous HSA-heme complex is immediately oxidized by O2, because HSA lacks the proximal histidine that enables the heme group to bind O2. In this paper, we report the introduction of a proximal histidine into the subdomain IB of HSA by site-directed mutagenesis to construct a tailor-made heme pocket (I142H/Y161L), which allows a reversible O2 binding to the prosthetic heme group. Laser flash photolysis experiments revealed that this artificial hemoprotein appears to have two different geometries of the axial-imidazole coordination, and these two species (I and II) showed rather low O2 binding affinities (P1/2O2 = 18 and 134 Torr) relative to those of Mb and Hb.  相似文献   

5.
Cytochromes c' are pentacoordinate heme proteins with sterically hindered distal sites that bind NO and CO but do not form stable complexes with O(2). Removal of distal pocket steric hindrance via a Leu→Ala mutation yields favorable O(2) binding (K(d) ~49 nM) without apparent H-bond stabilization of the Fe-O(2) moiety, as well as an extremely high distal heme-NO affinity (K(d) ~70 fM). The native Leu residue inhibits distal coordination of diatomic ligands by decreasing k(on) as well as increasing k(off). The connection between distal steric constraints, k(off) values, and distal to proximal heme-NO conversion is discussed.  相似文献   

6.
Mutation of His-39, one of the axial ligands in rat outer mitochondrial membrane cytochrome b(5) (OM cyt b(5)), to Val produces a mutant (H39V) capable of carrying out the oxidation of heme to biliverdin when incubated with hydrazine and O(2). The reaction proceeds via the formation of an oxyferrous complex (Fe(II)(-)O(2)) that is reduced by hydrazine to a ferric hydroperoxide (Fe(III)(-)OOH) species. The latter adds a hydroxyl group to the porphyrin to form meso-hydroxyheme. The observation that catalase does not inhibit the oxidation of the heme in the H39V mutant is consistent with the formation of a coordinated hydroperoxide (Fe(III)(-)OOH), which in heme oxygenase is the precursor of meso-hydroxyheme. By comparison, mutation of His-63, the other axial ligand in OM cyt b(5), to Val results in a mutant (H63V) capable of oxidizing heme to verdoheme in the absence of catalase. However, the oxidation of heme by H63V is completely inhibited by catalase. Furthermore, whereas the incubation of Fe(III)(-)H63V with H(2)O(2) leads to the nonspecific degradation of heme, the incubation of Fe(II)(-)H63V with H(2)O(2) results in the formation of meso-hydroxyheme, which upon exposure to O(2) is rapidly converted to verdoheme. These findings revealed that although meso-hydroxyheme is formed during the degradation of heme by the enzyme heme oxygenase or by the process of coupled oxidation of model hemes and hemoproteins not involved in heme catabolism, the corresponding mechanisms by which meso-hydroxyheme is generated are different. In the coupled oxidation process O(2) is reduced to noncoordinated H(2)O(2), which reacts with Fe(II)-heme to form meso-hydroxyheme. In the heme oxygenation reaction a coordinated O(2) molecule (Fe(II)(-)O(2)) is reduced to a coordinated peroxide molecule (Fe(III)(-)OOH), which oxidizes heme to meso-hydroxyheme.  相似文献   

7.
Recombinant human serum albumin (rHSA) incorporating the iron(II) complex of the tetraphenylporphyrin derivative (FepivP or FecycP) is a synthetic O2‐carrying hemoprotein [albumin‐heme (rHSA‐FepivP or rHSA‐FecycP)], which acts as a red blood cell substitute. The association and dissociation behavior of FepivP and FecycP with rHSA has been initially investigated by isothermal titration calorimetry. A strong heat release appeared after the injection of albumin‐heme into a large molar excess of rHSA. This exothermic enthalpy change was due to the transference of hemes to the other free albumins. The difference in the heme binding affinity to rHSA can be manifested in the enthalpy term. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Cytochrome c peroxidase (CCP) contains a five-coordinate heme active site. The reduction potential for the ferric to ferrous couple in CCP is anomalously low and pH dependent (Eo?=?~?180?mV vs. S.H.E. at pH 7). The contribution of the protein environment to the tuning of the redox potential of this couple is evaluated using site-directed mutants of several amino acid residues in the environment of the heme. These include proximal pocket mutation of residues Asp-235, Trp-191, Phe-202, and His-175, distal pocket mutation of residues Trp-51, His-52, and Arg-48; and a heme edge mutation of Ala-147. Where unknown, the structural changes resulting from the amino acid substitution have been studied by X-ray crystallography. In most cases, ostensibly polar or charged residues are replaced by large hydrophobic groups or alternatively by Ala or Gly. These latter have been shown to generate large, solvent-filled cavities. Reduction potentials are measured as a function of pH by spectroelectrochemistry. Starting with the X-ray-derived structures of CCP and the mutants, or with predicted structures generated by molecular dynamics (MD), predictions of redox potential changes are modeled using the protein dipoles Langevin dipoles (PDLD) method. These calculations serve to model an electrostatic assessment of the redox potential change with simplified assumptions about heme iron chemistry, with the balance of the experimentally observed shifts in redox potential being thence attributed to changes in the ligand set and heme coordination chemistry, and/or other changes in the structure not directly evident in the X-ray structures (e.g., ionization states, specific roles played by solvent species, or conformationally flexible portions of the protein). Agreement between theory and experiment is good for all mutant proteins with the exception of the mutation Arg 48 to Ala, and His 52 to Ala. In the former case, the influence of phosphate buffer is adduced to account for the discrepancy, with evidence for phosphate binding in the distal pocket, and measurements made in a bis?Ctris propane/2-(N-morpholino)ethanesulfonic acid buffer system agree well with theory. For the latter case, an unknown structural element relevant to His-52 and/or solvent influence in the mutant akin to anion binding in the distal pocket (though lacking proof that it is, and in this case lacking a phosphate effect) manifests in this mutant. The use of exogenous (sixth) ligands in dissecting the contributions to control of redox potential is also explored as a pathway for model building.  相似文献   

9.
10.
In this study, we demonstrate, using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation tandem mass spectrometry (ESI-MS/CID/MS), that stable noncovalent complexes can be formed between Fe(III)-heme and antimalarial agents, i.e., quinine, artemisinin, and the artemisinin derivatives, dihydroartemisinin, alpha- and beta-artemether, and beta-arteether. Differences in the binding behavior of the examined drugs with Fe(III)-heme and the stability of the drug-heme complexes are demonstrated. The results show that all tested antimalarial agents form a drug-heme complex with a 1:1 stoichiometry but that quinine also results in a second complex with the heme dimer. ESI-MS performed on mixtures of pairs of various antimalarial agents with heme indicate that quinine binds preferentially to Fe(III)-heme, while ESI-MS/CID/MS shows that the quinine-heme complex is nearly two times more stable than the complexes formed between heme and artemisinin or its derivatives. Moreover, it is found that dihydroartemisinin, the active metabolite of the artemisinin-type drugs in vivo, results in a Na(+)-containing heme-drug complex, which is as stable as the heme-quinine complex. The efficiency of drug-heme binding of artemisinin derivatives is generally lower and the decomposition under CID higher compared with quinine, but these parameters are within the same order of magnitude. These results suggest that the efficiency of antimalarial agents of the artemisinin-type to form noncovalent complexes with Fe(III)-heme is comparable with that of the traditional antimalarial agent, quinine. Our study illustrates that electrospray ionization mass spectrometry and collision-induced dissociation tandem mass spectrometry are suitable tools to probe noncovalent interactions between heme and antimalarial agents. The results obtained provide insights into the underlying molecular modes of action of the traditional antimalarial agent quinine and of the antimalarials of the artemisinin-type which are currently used to treat severe or multidrug-resistant malaria.  相似文献   

11.
The binding of a variety of ligands with Fe(III)-heme(+) ion, prosthetic group of heme proteins, has been studied in the gas phase by ESI-FT-ICR mass spectrometry. The ligands have been selected among substrate molecules of heme proteins (e.g., NO, nitroso compounds) or among model compounds acting for the functional groups that are present in the protein backbone (e.g., amines, thioethers, nitriles, ketones, amides, etc.). Both the kinetic and the thermodynamic features of the addition reactions are reported. Fe(III)-heme(+) ions react faster with lone pair donor ligands as the reaction becomes increasingly thermodynamically favored (higher heme cation basicity of the ligand, HCB, namely -DeltaG degrees for the ligand addition reaction). In turn HCBs correlate in general with the gas phase basicity toward the proton of the various ligands. A ligand addition equilibrium is established with weaker ligands, methanol, acetonitrile and acetone, yielding absolute HCB values, whereas ligand transfer equilibriums allowed a scale of relative (and absolute) HCBs to be constructed. NO displays exceptional binding properties towards Fe(III)-heme(+), unrelated to the low gas phase basicity toward the proton of this molecule, which is clearly the basis for the paramount role of heme proteins in NO binding and regulation.  相似文献   

12.
It has long been known that homologous blood transfusion will result in a lot ofserious problems such as viral infections,for example AIDS,hepatitis,antigenicsensitization and GVHD;therefore aggressive testing of donor blood has beenadopted[1 ,2 ] .Even after this introduction,which is time-consuming and expensive,wecould not eliminate all the risks. In the wake of these kinds of pitfalls,production andclinical use of the blood substitutes have emerged.The essential aim of blood substitutei…  相似文献   

13.
The direct oxygen sensor protein from Escherichia coli (Ec DOS) is a heme-based signal transducer protein responsible for phosphodiesterase (PDE) activity. Binding of either O2 or CO molecule to a reduced heme enhances the PDE activity toward 3',5'-cyclic diguanylic acid. We report ultraviolet resonance Raman (UVRR) spectroscopic investigations of the reduced, O2- and CO-bound forms of heme-bound PAS domain of Ec DOS. The UVRR results show that heme discriminates different ligands, resulting in altered conformations in the protein moiety. Specifically, the environment around Trp53 that contacts the 2-vinyl group of heme, is changed to a more hydrophobic environment by O2 binding, whereas it is changed to a more hydrophilic environment by CO-binding. In addition, the PDE activity of the O2- and CO-bound forms for the Trp53Phe mutant is significantly decreased compared with that of the wild type (WT), demonstrating the importance of Trp53 for the catalytic reaction. On the other hand, the binding of O2 or CO to the heme produces drastic changes in the Tyr126 of Ibeta-strand at the surface of the sensor domain. Furthermore, we found that Asn84 forms a hydrogen bond with Tyr126 either in the O2- or CO-bound forms but not in the reduced form. Finally, the PDE activities of the ligand-bound forms for Asn84Val and Tyr126Phe mutants are significantly reduced as compared with that of WT, suggesting the importance of the hydrogen-bonding network from heme 6-propionate to Tyr126 through Asn84 in signal transmission.  相似文献   

14.
The simple one-pot reaction of protoporphyrin IX and omega-(N-imidazolyl)alkylamine or O-methyl-L-histidyl-glycine with benzotriazol-1-yl-oxytris(dimethylamino)phosphonium hexafluorophosphate at room temperature produced a series of protoporphyrin IX species with a covalently linked proximal base at the propionate side-chain. The central iron was inserted by the general FeCl2 method, converting the free-base porphyrins to the corresponding protoheme IX derivatives. Mesoporphyrin IX and diacetyldeuteroporphyrin IX analogues were also prepared by the same procedure. The Fe(II) complexes formed dioxygen (O2) adducts in dimethylformamide at 25 degrees C. Some of them were incorporated into the hydrophobic domain of recombinant human serum albumin (rHSA), providing albumin-heme hybrids (rHSA-heme), which can bind and release O2 in aqueous media (pH 7.3, 25 degrees C). The oxidation process of converting the dioxygenated heme in rHSA to the inactive Fe(III) state obeyed first-order kinetics, indicating that the mu-oxo dimer formation was prevented by the immobilization of heme in the albumin scaffold. The rHSA-heme, in which the histidylglycil tail coordinates to the Fe(II) center, showed the most stable O2 adduct complexes.  相似文献   

15.
In this work, we report the absorption spectra in the Soret band region of isolated Fe(III)-heme+ and Fe(III)-heme+(His) ions in vacuo from action spectroscopy. Fe(III)-heme+ refers to iron(III) coordinated by the dianion of protoporphyrin IX. We find that the absorption of the five-coordinate complex is similar to that of pentacoordinate metmyoglobin variants with hydrophobic binding pockets except for an overall blueshift of about 16 nm. In the case of four-coordinate iron(III), the Soret band is similar to that of five-coordinate iron(III) but much narrower. These spectra serve as a benchmark for theoretical modeling and also serve to identify the coordination state of ferric heme proteins. To our knowledge this is the first unequivocal spectroscopic characterization of isolated 4c ferric heme in the gas phase.  相似文献   

16.
Summary In the first part (pp. 461–478 in this issue) of this study regarding the histamine H2 receptor agonistic binding site, the best possible interactions of histamine with an -helical oligopeptide, mimicking a part of the fifth transmembrane -helical domain (TM5) of the histamine H2 receptor, were considered. It was established that histamine can only bind via two H-bonds with a pure -helical TM5, when the binding site consists of Tyr182/Asp186 and not of the Asp186/Thr190 couple. In this second part, two particular three-dimensional models of G-protein-coupled receptors previously reported in the literature are compared in relation to agonist binding at the histamine H2 receptor. The differences between these two receptor models are discussed in relation to the general benefits and limitations of such receptor models. Also the pros and cons of simplifying receptor models to a relatively easy-to-deal-with oligopeptide for mimicking agonistic binding to an agonistic binding site are addressed. Within complete receptor models, the simultaneous interaction of histamine with both TM3 and TM5 can be analysed. The earlier suggested three-point interaction of histamine with the histamine H2 receptor can be explored. Our results demonstrate that a three-point interaction cannot be established for the Asp98/Asp186/Thr190 binding site in either of the investigated receptor models, whereas histamine can form three H-bonds in case the agonistic binding site is constituted by the Asp98/Tyr182/Asp186 triplet. Furthermore this latter triplet is seen to be able to accommodate a series of substituted histamine analogues with known histamine H2 agonistic activity as well.  相似文献   

17.
Heme oxygenase (HO) catalyzes the oxygen-dependent degradation of heme to biliverdinIXalpha, CO, and free iron ion via three sequential monooxygenase reactions. Although the distinct active-site structure of HO from cytochrome P450 families suggests unique distal protein machinery to activate molecular oxygen, the mechanism and the key amino acid for the oxygen activation have not been clear. To investigate the functionality of highly conserved polar amino acids in the distal helix of HO-1, we have prepared alanine mutants: T135A, R136A, D140A, and S142A, and found drastic changes in the heme degradation reactions of D140A. In this paper, we report the first evidence that D140 is involved in the oxygen activation mechanism in HO-1. The heme complexes of HO mutants examined in this study fold and bind heme normally. The pK(a) values of the iron-bound water and autoxidation rates of the oxy-form are increased with R136A, D140A, and S142A mutations, but are not changed with T135A mutation. As the wild-type, T135A, R136A, and S142A degrade heme to verdohemeIXalpha with H(2)O(2) and to biliverdinIXalpha with the NADPH reductase system. On the other hand, D140A heme complex forms compound II with H(2)O(2), and no heme degradation occurs. For the NADPH reductase system, the oxy-form of D140A heme complex is accumulated in the reaction, and only 50% of heme is degraded. The stopped flow experiments suggest that D140A cannot activate iron-bound dioxygen and hydroperoxide properly. To investigate the carboxylate functionality of D140, we further replaced D140 with glutamic acid (D140E), phenylalanine (D140F), and asparagine (D140N). D140E degrades heme normally, but D140N shows reactivity similar to that of D140A. D140F loses heme degradation activity completely. All of these results indicate that the carboxylate at position 140 is essential to activate the iron-bound dioxygen and hydroperoxide. On the basis of the present findings, we propose an oxygen activation mechanism involving the hydrogen-bonding network through the bridging water and D140 side chain.  相似文献   

18.
19.
Truncated hemoglobin-N is believed to constitute a defense mechanism of Mycobacterium tuberculosis against NO produced by macrophages, which is converted to the harmless nitrate anion. This process is catalyzed very efficiently, as the enzyme activity is limited by ligand diffusion. By using extended molecular dynamics simulations we explore the mechanism that regulates ligand diffusion and, particularly, the role played by residues that assist binding of O2 to the heme group. Our data strongly support the hypothesis that the access of NO to the heme cavity is dynamically regulated by the TyrB10-GlnE11 pair, which acts as a molecular switch that controls opening of the ligand diffusion tunnel. Binding of O2 to the heme group triggers local conformational changes in the TyrB10-GlnE11 pair, which favor opening of the PheE15 gate residue through global changes in the essential motions of the protein skeleton. The complex pattern of conformational changes triggered upon O2 binding is drastically altered in the GlnE11-->Ala and TyrB10-->Phe mutants, which justifies the poor enzymatic activity observed experimentally for the TyrB10-->Phe form. The results support a molecular mechanism evolved to ensure access of NO to the heme cavity in the oxygenated form of the protein, which should warrant survival of the microorganism under stress conditions.  相似文献   

20.
Proton spin relaxation induced by the triplet ground state of O(2) in the zinc-containing diamagnetic analogue of sperm whale deoxymyoglobin has been measured as a function of oxygen concentration. As no covalent binding of oxygen to the metal occurs in the zinc species, the relaxation effects of O(2) on the protein (1)H resonances arise exclusively via much weaker noncovalent interactions. The relaxation effects at the amide proton sites are found to be highly localized and are derived almost exclusively from O(2) binding at the four previously identified xenon binding sites. Relative binding constants of 1.0, 0.08, 0.07, and 0.23 were determined for the Xe 1, Xe 2, Xe 3, and Xe 4 sites, respectively. In combination with earlier measurements of the kinetics of the heme binding of oxygen, these equilibria measurements enable a more detailed analysis of models characterizing O(2) entry and egress. A correlation is established between the fraction of O(2) which enters the Fe(2+)-binding site via rotation of the distal histidine side chain (so-called "histidine gate") and the experimentally observable O(2) (or CO) lifetime in the Xe 1 site. A physiological role for these secondary oxygen binding sites is proposed in enhancing the efficiency of the O(2) association reaction by rendering more favorable its competition with water binding in the distal heme pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号