首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat capacities (C p,m) of 2-amino-5-methylpyridine (AMP) were measured by a precision automated adiabatic calorimeter over the temperature range from 80 to 398 K. A solid-liquid phase transition was found in the range from 336 to 351 K with the peak heat capacity at 350.426 K. The melting temperature (T m), the molar enthalpy (Δfus H m0), and the molar entropy (Δfus S m0) of fusion were determined to be 350.431±0.018 K, 18.108 kJ mol−1 and 51.676 J K−1 mol−1, respectively. The mole fraction purity of the sample used was determined to be 0.99734 through the Van’t Hoff equation. The thermodynamic functions (H T-H 298.15 and S T-S 298.15) were calculated. The molar energy of combustion and the standard molar enthalpy of combustion were determined, ΔU c(C6H8N2,cr)= −3500.15±1.51 kJ mol−1 and Δc H m0 (C6H8N2,cr)= −3502.64±1.51 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. The standard molar enthalpy of formation of the crystalline compound was derived, Δr H m0 (C6H8N2,cr)= −1.74±0.57 kJ mol−1.  相似文献   

2.
The standard enthalpy of combustion of crystalline silver pivalate, (CH3)3CC(O)OAg (AgPiv), was determined in an isoperibolic calorimeter with a self-sealing steel bomb, Δc H 0 (AgPiv, cr)= −2786.9±5.6 kJ mol−1. The value of standard enthalpy of formation was derived for crystalline state: Δf H 0(AgPiv,cr)= −466.9±5.6 kJ mol−1. Using the enthalpy of sublimation, measured earlier, the enthalpy of formation of gaseous dimer was obtained: Δf H 0(Ag2Piv2,g)= −787±14 kJ mol−1. The enthalpy of reaction (CH3)3CC(O)OAg(cr)=Ag(cr)+(CH3)3CC(O)O.(g) was estimated, Δr H 0=202 kJ mol−1.  相似文献   

3.
Thermochemical studies on the thioproline   总被引:3,自引:0,他引:3  
The combustion energy of thioproline was determined by the precision rotating-bomb calorimeter at 298.15 K to be Δc U= –2469.30±1.44 kJ mol–1. From the results and other auxiliary quantities, the standard molar enthalpy of combustion and the standard molar enthalpy of formation of thioproline were calculated to be Δc H m θC4H7NO2S, (s), 298.15 K= –2469.92±1.44 kJ mol–1 and Δf H m θC4H7NO2S, (s), 298.15K= –401.33±1.54 kJ mol–1.  相似文献   

4.
The enthalpies of combustion and formation of S-lactic acid at 298.15 K, Δc H mo(cr.) = −1337.9 ± 0.8 and Δf H mo(cr.) = −700.1 ± 0.9 kJ/mol, were determined by calorimetry. The temperature dependence of acid vapor pressure was studied by the transpiration method, and the enthalpy of its vaporization was obtained, Δvap H o(298.15 K) = 69.1 ± 1.0 kJ/mol. The temperature and enthalpy of fusion, T m (330.4 K) and Δm H o(298.15 K) = 14.7 ± 0.2 kJ/mol, were determined by differential scanning calorimetry. The enthalpy of formation of the acid in the gas phase was obtained. Ab initio methods were used to perform a conformational analysis of the acid, calculate fundamental vibration frequencies, moments of inertia, and total and relative energies of the stablest conformers. Thermodynamic properties were calculated in the ideal gas state over the temperature range 0–1500 K. A thermodynamic analysis of mutual transformation processes (the formation of SS- and RS(meso)-lactides from S-lactic acid and the racemization of these lactides) and the formation of poly-(RS)-lactide from S-lactic acid and SS- and RS(meso)-lactides was performed.  相似文献   

5.
The low-temperature heat capacity C p,m of erythritol (C4H10O4, CAS 149-32-6) was precisely measured in the temperature range from 80 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=390.254 K from the experimental C p-T curve. The molar enthalpy and entropy of this transition were determined to be 37.92±0.19 kJ mol−1 and 97.17±0.49 J K−1 mol−1, respectively. The thermodynamic functions [H T-H 298.15] and [S T-S 298.15], were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The standard molar enthalpy of combustion and the standard molar enthalpy of formation of the compound have been determined: Δc H m0(C4H10O4, cr)= −2102.90±1.56 kJ mol−1 and Δf H m0(C4H10O4, cr)= − 900.29±0.84 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.  相似文献   

6.
Heat capacity and enthalpy increments of calcium niobates CaNb2O6 and Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (669–1421 K). Temperature dependencies of the molar heat capacity in the form C pm=200.4+0.03432T−3.450·106/T 2 J K−1 mol−1 for CaNb2O6 and C pm=257.2+0.03621T−4.435·106/T 2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S m0(CaNb2O6, 298.15 K)=167.3±0.9 J K−1 mol−1 and S m0(Ca2Nb2O7, 298.15 K)=212.4±1.2 J K−1 mol−1, were evaluated from the low temperature heat capacity measurements. Standard enthalpies of formation at 298.15 K were derived using published values of Gibbs energy of formation and presented heat capacity and entropy data: Δf H 0(CaNb2O6, 298.15 K)= −2664.52 kJ molt-1 and Δf H 0(Ca2Nb2O7, 298.15 K)= −3346.91 kJ mol−1.  相似文献   

7.
A novel solid complex, formulated as Ho(PDC)3 (o-phen), has been obtained from the reaction of hydrate holmium chloride, ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen·H2O) in absolute ethanol, which was characterized by elemental analysis, TG-DTG and IR spectrum. The enthalpy change of the reaction of complex formation from a solution of the reagents, ΔrHmθ (sol), and the molar heat capacity of the complex, cm, were determined as being –19.161±0.051 kJ mol–1 and 79.264±1.218 J mol–1 K–1 at 298.15 K by using an RD-496 III heat conduction microcalorimeter. The enthalpy change of complex formation from the reaction of the reagents in the solid phase, ΔrHmθ(s), was calculated as being (23.981±0.339) kJ mol–1 on the basis of an appropriate thermochemical cycle and other auxiliary thermodynamic data. The thermodynamics of reaction of formation of the complex was investigated by the reaction in solution at the temperature range of 292.15–301.15 K. The constant-volume combustion energy of the complex, ΔcU, was determined as being –16788.46±7.74 kJ mol–1 by an RBC-II type rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, ΔcHmθ, and standard enthalpy of formation, ΔfHmθ, were calculated to be –16803.95±7.74 and –1115.42±8.94 kJ mol–1, respectively.  相似文献   

8.
The standard (p0=0.1 MPa) molar enthalpies of formation, ΔfHm0, for crystalline phthalimides: phthalimide, N-ethylphthalimide and N-propylphthalimide were derived from the standard molar enthalpies of combustion, in oxygen, at the temperature 298.15 K, measured by static bomb-combustion calorimetry, as, respectively, – (318.0±1.7), – (350.1±2.7) and – (377.3±2.2) kJ mol–1. The standard molar enthalpies of sublimation, ΔcrgHm0, at T=298.15 K were derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapour pressures for phthalimide, as (106.9±1.2) kJ mol–1 and from high temperature Calvet microcalorimetry for phthalimide, N-ethylphthalimide and N-propylphthalimide as, respectively, (106.3±1.3), (91.0±1.2) and (98.2±1.4) kJ mol–1. The derived standard molar enthalpies of formation, in the gaseous state, are analysed in terms of enthalpic increments and interpreted in terms of molecular structure.  相似文献   

9.
The standard (p 0=0.1 MPa) molar enthalpy of formation, Δf H 0 m, for crystalline N-phenylphthalimide was derived from its standard molar enthalpy of combustion, in oxygen, at the temperature 298.15 K, measured by static bomb-combustion calorimetry, as –206.0±3.4 kJ mol–1. The standard molar enthalpy of sublimation, Δg cr H 0 m , at T=298.15 K, was derived, from high temperature Calvet microcalorimetry, as 121.3±1.0 kJ mol–1. The derived standard molar enthalpy of formation, in the gaseous state, is analysed in terms of enthalpic increments and interpreted in terms of molecular structure.  相似文献   

10.
The constant-volume combustion energies of the lead salts of 2-hydroxy-3,5-dinitropyridine (2HDNPPb) and 4-hydroxy-3,5-dinitropyridine (4HDNPPb), ΔU c (2HDNPPb(s) and 4HDNPP(s)), were determined as –4441.92±2.43 and –4515.74±1.92 kJ mol–1 , respectively, at 298.15 K. Their standard enthalpies of combustion, Δc m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K), and standard enthalpies of formation, Δr m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K) were as –4425.81±2.43, –4499.63±1.92 kJ mol–1 and –870.43±2.76, –796.65±2.32 kJ mol–1 , respectively. As two combustion catalysts, 2HDNPPb and 4HDNPPb can enhance the burning rate and reduce the pressure exponent of RDX–CMDB propellant.  相似文献   

11.
The standard molar enthalpy of formation Δf H m 0=–760±12 kJ for amorphous silicon nitride a-Si3N4 has been determined from fluorine combustion calorimetry measurements of the massic energy of the reaction: a-Si3N4(s)+6F2(g)=3SiF4(g)+2N2(g). This value combined with Δf H m 0= –828.9±3.4 kJ for a-Si3N4 indicates that determined for the first time molar enthalpy change for the transition from amorphous to α-crystalline form Δtrs H m 0=69±13 kJ is very evident, in spite of its large uncertainty range resulting from impurity corrections. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Calorimetric study of thermal decomposition of lithium hexafluorophosphate   总被引:4,自引:0,他引:4  
Enthalpy of formation of lithium hexafluorophosphate was calculated based on the differential scanning calorimetry study of heat capacity and thermal decomposition. It was found that thermal decomposition of LiPF6 proceeds at normal pressure in the temperature range 450-550 K. Enthalpy of LiPF6 decomposition is Δd H(LiPF6, c, 298.15 K)= 84.27±1.34 kJ mole-1. Enthalpy of formation of lithium hexafluorophosphate from elements in standard state is Δf H 0(LiPF6,c, 298.15 K) = -2296±3 kJ mol-1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The temperature dependence of the heat capacity C p o = f(T) of palladium oxide PdO(cr.) was studied for the first time in an adiabatic vacuum calorimeter in the range of 6.48–328.86 K. Standard thermodynamic functions C p o(T), H o(T) — H o(0), S o(T), and G o(T) — H o(0) in the range of T → 0 to 330 K (key quantities in different thermodynamic calculations with the participation of palladium compounds) were calculated on the basis of the experimental data. Based on an analysis of studies on determining the thermodynamic properties of PdO(cr.), the following values of absolute entropy, standard enthalpy, and Gibbs function of the formation of palladium oxide are recommended: S o(298.15) = 39.58 ± 0.15 J/(K mol), Δf H o(298.15) = −112.69 ± 0.32 kJ/mol, Δf G o(298.15) = −82.68 ± 0.35 kJ/mol. The stability of Pd(OH)2 (amorph.) with respect to PdO(cr.) was estimated.  相似文献   

14.
The energy of combustion of crystalline 3,4,5-trimethoxybenzoic acid in oxygen at T=298.15 K was determined to be -4795.9±1.3 kJ mol-1 using combustion calorimetry. The derived standard molar enthalpies of formation of 3,4,5-trimethoxybenzoic acid in crystalline and gaseous states at T=298.15 K, ΔfHm Θ (cr) and ΔfHm Θ (g), were -852.9±1.9 and -721.7±2.0 kJ mol-1, respectively. The reliability of the results obtained was commented upon and compared with literature values. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
A solid complex Eu(C5H8NS2)3(C12H8N2) has been obtained from reaction of hydrous europium chloride with ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen⋅H2O) in absolute ethanol. IR spectrum of the complex indicated that Eu3+ in the complex coordinated with sulfur atoms from the APDC and nitrogen atoms from the o-phen. TG-DTG investigation provided the evidence that the title complex was decomposed into EuS. The enthalpy change of the reaction of formation of the complex in ethanol, Δr H m θ(l), as –22.214±0.081 kJ mol–1, and the molar heat capacity of the complex, c m, as 61.676±0.651 J mol–1 K–1, at 298.15 K were determined by an RD-496 III type microcalorimeter. The enthalpy change of the reaction of formation of the complex in solid, Δr H m θ(s), was calculated as 54.527±0.314 kJ mol–1 through a thermochemistry cycle. Based on the thermodynamics and kinetics on the reaction of formation of the complex in ethanol at different temperatures, fundamental parameters, including the activation enthalpy (ΔH θ), the activation entropy (ΔS θ), the activation free energy (ΔG θ), the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A) and the reaction order (n), were obtained. The constant-volume combustion energy of the complex, Δc U, was determined as –16937.88±9.79 kJ mol–1 by an RBC-II type rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, Δc H m θ, and standard enthalpy of formation, Δf H m θ, were calculated to be –16953.37±9.79 and –1708.23±10.69 kJ mol–1, respectively.  相似文献   

16.
Low-temperature heat capacities of a solid complex Zn(Val)SO4·H2O(s) were measured by a precision automated adiabatic calorimeter over the temperature range between 78 and 373 K. The initial dehydration temperature of the coordination compound was determined to be, T D=327.05 K, by analysis of the heat-capacity curve. The experimental values of molar heat capacities were fitted to a polynomial equation of heat capacities (C p,m) with the reduced temperatures (x), [x=f (T)], by least square method. The polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the complex relative to the standard reference temperature 298.15 K were given with the interval of 5 K. Enthalpies of dissolution of the [ZnSO4·7H2O(s)+Val(s)] (Δsol H m,l 0) and the Zn(Val)SO4·H2O(s) (Δsol H m,2 0) in 100.00 mL of 2 mol dm–3 HCl(aq) at T=298.15 K were determined to be, Δsol H m,l 0=(94.588±0.025) kJ mol–1 and Δsol H m,2 0=–(46.118±0.055) kJ mol–1, by means of a homemade isoperibol solution–reaction calorimeter. The standard molar enthalpy of formation of the compound was determined as: Δf H m 0 (Zn(Val)SO4·H2O(s), 298.15 K)=–(1850.97±1.92) kJ mol–1, from the enthalpies of dissolution and other auxiliary thermodynamic data through a Hess thermochemical cycle. Furthermore, the reliability of the Hess thermochemical cycle was verified by comparing UV/Vis spectra and the refractive indexes of solution A (from dissolution of the [ZnSO4·7H2O(s)+Val(s)] mixture in 2 mol dm–3 hydrochloric acid) and solution A’ (from dissolution of the complex Zn(Val)SO4·H2O(s) in 2 mol dm–3 hydrochloric acid).  相似文献   

17.
The temperature dependence of the molar heat capacity (C0 p) of hydrofullerene C60H36 between 5 and 340 K was determined by adiabatic vacuum calorimetry with an error of about 0.2%. The experimental data were used for the calculation of the thermodynamic functions of the compound in the range 0 to340 K. It was found that at T=298.15 K and p=101.325 kPa C0 p (298.15)=690.0 J K−1 mol−1,Ho(298.15)−Ho(0)= 84.94 kJ mol−1,So(298.15)=506.8 J K−1 mol−1, Go(298.15)−Ho(0)= −66.17 kJ mol−1. The standard entropy of formation of hydrofullerene C60H36 and the entropy of reaction of its formation by hydrogenation of fullerene C60 with hydrogen were estimated and at T=298.15 K they were ΔfSo= −2188.4 J K−1 mol−1 and ΔrSo= −2270.5 J K−1mol−1, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The heat capacities of 2-benzoylpyridine were measured with an automated adiabatic calorimeter over the temperature range from 80 to 340 K. The melting point, molar enthalpy, ΔfusHm, and entropy, ΔfusSm, of fusion of this compound were determined to be 316.49±0.04 K, 20.91±0.03 kJ mol–1 and 66.07±0.05 J mol–1 K–1, respectively. The purity of the compound was calculated to be 99.60 mol% by using the fractional melting technique. The thermodynamic functions (HTH298.15) and (STS298.15) were calculated based on the heat capacity measurements in the temperature range of 80–340 K with an interval of 5 K. The thermal properties of the compound were further investigated by differential scanning calorimetry (DSC). From the DSC curve, the temperature corresponding to the maximum evaporation rate, the molar enthalpy and entropy of evaporation were determined to be 556.3±0.1 K, 51.3±0.2 kJ mol–1 and 92.2±0.4 J K–1 mol–1, respectively, under the experimental conditions.  相似文献   

19.
The heat capacity and the enthalpy increments of strontium metaniobate SrNb2O6 were measured by the relaxation method (2-276 K), micro DSC calorimetry (260-320 K) and drop calorimetry (723-1472 K). Temperature dependence of the molar heat capacity in the form C pm=(200.47±5.51)+(0.02937±0.0760)T-(3.4728±0.3115)·106/T 2 J K−1 mol−1 (298-1500 K) was derived by the least-squares method from the experimental data. Furthermore, the standard molar entropy at 298.15 K S m0 (298.15 K)=173.88±0.39 J K−1 mol−1 was evaluated from the low temperature heat capacity measurements. The standard enthalpy of formation Δf H 0 (298.15 K)=-2826.78 kJ mol−1 was derived from total energies obtained by full potential LAPW electronic structure calculations within density functional theory.  相似文献   

20.
A calorimetric study of natural pyromorphite Pb5[PO4]3Cl was performed. Its enthalpy of formation was determined by melt solution calorimetry from elements Δf H el(298.15 K) = −4124 ± 20 kJ/mol. Value Δf G elo(298.15 K) = −3765 ± 20 kJ/mol was calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号