首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods have been proposed and tested for analyzing local magnetic parameters in a system of single-domain ferromagnetic nanoparticles using their magnetization curves. The magnetic inhomogeneity in ensembles of Fe3C nanoparticles encapsulated in carbon nanotubes has been investigated. It has been established that the Fe3C nanoparticles encapsulated in carbon nanotubes are characterized by two-modal distribution functions of the local magnetic anisotropy energy. The particle distribution over the blocking temperature is reconstructed from the experimental temperature dependence of the coercive force. The allowance made for the inhomogeneity of the local magnetic parameters of the Fe3C nanoparticles, which were studied by the proposed methods, explains the discrepancy between the magnetic anisotropy energy determined by the method of the magnetization approaching saturation and the magnetic anisotropy energy estimated from the coercive force of single-domain nanoparticles.  相似文献   

2.
The magnetic properties of the magnetite Fe3O4(110) surface have been studied by spin resolved Auger electron spectroscopy (SRAES). Experimental spin resolved Auger spectra are presented. The results of calculation of Auger lines polarization carried out on the basis of electronic state density are presented. Problems related to magnetic moments of bivalent (Fe2+) and trivalent (Fe3+) ions on the Fe3O4(110) surface are discussed. It is established that the deposition of a thin bismuth film on the surface results in significant growth of polarization of iron Auger peaks, which is due to additional spin-orbit scattering of electrons by bismuth atoms.  相似文献   

3.
Fe/Fe3C-functionalized carbon nanotubes (CNTs) have been prepared by the floating catalyst chemical vapor-deposition method. It is demonstrated that the Fe and Fe3C nanostructures are both encapsulated in the CNTs or decorated on the surface of CNTs. The Fe/Fe3C content in the composites can easily be adjusted by changing the ferrocene concentration in the preparation. The electromagnetic properties of the CNTs have been evaluated in the frequency range of 2–18 GHz, and the nanocomposites exhibit excellent microwave absorbing performance. The CNT composites with higher Fe/Fe3C content show enhanced microwave reflection losses. The significant influence of the Fe/Fe3C nanostructures on the microwave absorption is realized by tuning the characteristic impedance of the nanocomposites. With increasing thickness, the maximum reflection loss peak shifts to lower frequency. The microwave absorbing performance of the composites is mainly caused by dielectric loss, resulting from the continuous CNT networks with excellent electrical conductivity.  相似文献   

4.
Carbon nanotubes (CNTs) are synthesized by the catalytic decomposition of acetylene using low pressure chemical vapour deposition method (LPCVD) at 800 °C and at a chamber pressure of 10 Torr over a supported catalyst film of Fe70Pd30. Morphology of these CNTs is studied using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM). From HRTEM image of these multi-walled carbon nanotubes (MWNTs), it is clear that these MWNTs do not possess a co-axial cylindrical structure, but are composed of imperfect and broken graphite cylinders of different sizes. The average diameter and length of the nanotubes varies between 20–70 nm and 5–60 μm respectively. Electrical transport measurements of these MWNTs are studied over a temperature range of 298–4.2 K. The results have been interpreted in terms of variable-range hopping (VRH) over the entire temperature range of 298–4.2 K. Three-dimensional variable-range hopping (VRH) is suggested for the temperature range (298–125 K), while two-dimensional VRH is observed for the temperature range (125–4.2 K).  相似文献   

5.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

6.
Iron and magnetite nanoparticles in zirconium oxide matrix have been prepared by a heat treatment of a mixture of nanocrystalline iron oxide and zirconium oxide or zirconium hydride powders. Changes in the phase composition of the as-mixed powders during annealing in vacuum or in hydrogen were monitored using thermomagnetic curves. Structure and phase composition of the final products were characterized by X-ray powder diffraction and 57Fe Mössbauer spectroscopy. Influence of the composition of the original mixture and quality of the annealing atmosphere on the final properties of the composites are discussed.  相似文献   

7.
Single crystals of the Tb0.75Ho0.25Fe3(BO3)4 ferroborate have been grown by the group method from a solution–melt based on bismuth trimolybdate. The magnetic and magnetoelectric properties of the ferroborate single crystals have been investigated in the temperature range from 4.2 to 300 K and in magnetic fields up to 9 T. Magnetically, this material is an antiferromagnet with the Néel temperature T N = 38.8 K and easy-axis anisotropy. The magnitude of the magnetoelectric polarization has been found to be more than 1.5–2.0 times greater than the sum of the polarizations induced by the magnetic field for the ferroborates TbFe3(BO3)4 and HoFe3(BO3)4 taken in the corresponding shares.  相似文献   

8.
The structural, magnetic, and electrical properties of half-metallic Heusler alloys Fe2MnAl, Fe2MnSi, and Co2MnAl have been investigated in the temperature range of 4–900 K. According to the X-ray diffraction analysis, these alloys have the B2 and L21 structures with different degrees of atomic order. The magnetic state of the alloys is considered as a two-sublattice ferrimagnet. The electrical resistivity and thermoelectric power have been discussed in the framework of the two-current conduction model taking into account the existence of an energy gap in the electronic spectrum of the alloys near the Fermi level for the subband with spin-down (minority) electrons.  相似文献   

9.
We present a systematic investigation on the structural and magnetic properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by a polyethylene glycol (PEG)-assisted hydrothermal route. XRD, FT-IR, TEM and VSM were used for the structural, morphological, dielectric properties and magnetic investigation of the products, respectively. Average crystallite size of product was estimated using Line profile fitting as 6 ± 1 nm and particle size as 6.5 ± 1.0 nm from TEM micrographs. Magnetization measurements have shown that the particles have a blocking temperature of 134 K. Magnetization and the coercive field of the sample increase by decreasing the temperature. The conductivity measurements reveal the semiconducting behaviour for the sample. Temperature-dependent dielectric properties: dielectric permittivity (ε) and ac conductivity (σac) for the sample were studied as a function of applied frequency in the range from 1 Hz to 3 MHz. These studies indicated that the dielectric dispersion curve for the sample showed usual dielectric dispersion which can be explained on the basis of Koop’s theory, which is based on the Maxwell–Wagner model for the interfacial polarization of homogeneous double structure.  相似文献   

10.
The structural properties and parameters of ferromagnetic resonance have been studied for Fe73.5CuNb3Si13.5B9 nanocrystalline alloys produced from the initial amorphous state via annealing under different conditions. The dependence of the linewidth of the ferromagnetic resonance on the grain size ΔHD 6 has been found. The result is discussed within the framework of the random magnetic anisotropy model.  相似文献   

11.
We have performed a complex investigation of the structure and the magnetic and electrical properties of a warwickite single crystal with the composition Fe1.91V0.09BO4. The results of Mössbauer measurements at T=300 K indicate that there exist “localized” (Fe2+, Fe3+) and “delocalized” (Fe2.5+) states distributed over two crystallographically nonequivalent positions. The results of magnetic measurements show that warwickite is a P-type ferrimagnet below T=130 K. The material exhibits hopping conductivity involving strongly interacting electrons. The experimental data are analyzed in comparison to the properties of the initial (unsubstituted) Fe2BO4 warwickite. The entire body of data on the electric conductivity and magnetization are interpreted on a qualitative basis.  相似文献   

12.
Single crystals of Pb2Fe2Ge2O9 have been grown. They were subjected to X-ray diffraction, magnetic, neutron diffraction, Mössbauer and spin resonance studies. It has been established that Pb2Fe2Ge2O9 is a weak ferromagnet with a Néel temperature T N = 46 K, and the exchange and spin-flop transition fields have been estimated. It has been demonstrated that the weak ferromagnetic moment is actually the result of the single-ion anisotropy axes for the magnetic moments of different magnetic sublattices being not collinear.  相似文献   

13.
The use of carbon shells offers many advantages in surface coating or surface modification due to their surface with activated carboxyl and carbonyl groups. In this study, the Fe3O4@C@YVO4:Eu3+ composites were prepared through a simple sol–gel process. Reactive carbon interlayer was introduced as a key component, which separates lanthanide-based luminescent component from the magnetite, more importantly, it effectively prevent oxidation of the Fe3O4 core during the whole preparation process. The morphology, structure, magnetic, and luminescent properties of the composites were characterized by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, X-ray photoelectron spectra, VSM, and photoluminescent spectrophotometer. As a result, the Fe3O4@C/YVO4:Eu3+ composites with well-crystallized and core–shell structure were prepared and the YVO4:Eu3+ luminescent layer decorating the Fe3O4@C core–shell microspheres are about 10 nm. In addition, the Fe3O4@C@YVO4:Eu3+ composites have the excellent magnetic and luminescent properties, which allow them great potential for bioapplications such as magnetic bioseparation, magnetic resonance imaging, and drug/gene delivery.  相似文献   

14.
The magnetic properties of an easy-axis trigonal DyFe3(BO3)4 antiferromagnetic crystal have been theoretically studied. On this basis, recent experimental data [1] on the field and temperature dependences of magnetization and the temperature dependence of the initial magnetic susceptibility for three crystallographic directions in this antiferromagnet have been interpreted. The characteristics of the trigonal crystal field for the rare earth ion and the parameters of the Fe-Fe and Fe-Dy exchange interactions are determined. Limitations imposed by features of the magnetic characteristics (anisotropic magnetization in the three crystallographic directions, Schottky-type anomalies in the magnetic susceptibility, etc.) on the possible splitting of the ground-state multiplet in the crystal field and the splitting of the lowest doublet due to the f-d interaction for Dy3+ ions are established.  相似文献   

15.
The magnetic and magnetodielectric properties of Ho0.5Nd0.5Fe3(BO3)4 ferroborate with the competing Ho–Fe and Nd–Fe exchange couplings have been experimentally and theoretically investigated. Step anomalies in the magnetization curves at the spin-reorientation transition induced by the magnetic field Bc have been found. The spontaneous spin-reorientation transition temperature TSR ≈ 8 K has been refined. The measured magnetic properties and observed features are interpreted using a single theoretical approach based on the molecular field approximation and calculations within the crystal field model of the rare-earth ion. Interpretation of the experimental data includes determination of the crystal field parameters for Ho3+ and Nd3+ ions in Ho0.5Nd0.5Fe3(BO3)4 and parameters of the Ho–Fe and Nd–Fe exchange couplings.  相似文献   

16.
The magnetic properties of the binuclear nitrosyl-iron complexes Fe2(SC3H5N2)2(NO)4 are investigated. It is demonstrated that several types of particles, such as dimers with a pair of spins 1/2, dimers with a pair of spins 5/2, and paramagnetic particles with spin 3/2, make a contribution to the magnetic properties of the complexes. A decrease in the temperature below 25 K leads to a change in the shape of the EPR spectra corresponding to these dimers, so that Lorentzian lines (homogeneous broadening) transform into Gaussian lines (inhomogeneous broadening). This is accompanied by a stepwise change in the EPR line width and g factors. The change in the line shape indicates that complexes become asymmetric at low temperatures, possibly, due to the decrease in the spin exchange frequency below the frequency of the microwave field of the spectrometer.  相似文献   

17.
Single-crystal Fe3O4 nanoparticles with uniform size and relatively better monodispersity have been successfully synthesized via a facile room temperature coprecipitation route in the present of poly(vinyl pyrrolidone) (PVP). This method does not require high temperature, expensive and toxic starting materials, complicated procedure and toxic organic solvents. The magnetic properties of as-prepared samples were recorded on a superconducting quantum interference device magnetometer. Its blocking temperature is 140 K. The hysteresis loops of single-crystal Fe3O4 nanoparticles at 300 K and 10 K show the transition from superparamagnetic to ferromagnetic behavior. And the maintenance of high saturation magnetization ascribes to the single-crystalline nature of these Fe3O4 nanoparticles. PACS 75.50.K; 75.70.C  相似文献   

18.
Fe0.27Mn0.73S single crystals were studied. A magnetic transition is detected near 197 K, which is accompanied by anomalies of the thermal, electrical, and resonant properties.  相似文献   

19.
Magnetization and neutron diffraction measurements have been made on the title pseudo-binary of tetragonal anti-ferromagnets Fe2 As and Cr2 As. In this system antiferromagnetic (AFM) ordering appears below 310 K. The moments are confined in theab plane but unlike in the end members they are tilted off thea-axis. In addition to the AFM structure a weak ferromagnetic behaviour shows up below∼80 K with a rather low moment of ∼0.07 μB per formula unit at 5 K and under a field of 3 T.  相似文献   

20.
The crystal and magnetic structures of Fe1.087Te have been studied by neutron powder diffraction in the temperature range from 1.7 to 80 K at pressures of  ≈0.4 and ≈1.2 GPa. No symmetry change of the tetragonal paramagnetic ambient pressure phase (space group P4/nmm) was observed for temperatures above 60 K and pressures up to  ≈1.2 GPa. A novel pressure-induced phase of Fe1.087Te having orthorhombic symmetry (space group Pmmn) and incommensurate antiferromagneticbicollinear order was observed in the temperature range from 50 to 60 K at  ≈1.2 GPa. The known monoclinic ambient pressure phase of Fe1.087Te (space group P2 1/n) with commensurate antiferromagnetic order was found to be stable up to at least  ≈1.2 GPa at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号