首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of the vacancy concentration on the Li conductivity of the (Li(1-x)Na(x))(0.2)La(0.6)TiO(3) and (Li(1-x)Na(x)(0.5)La(0.5)TiO(3) perovskite series, with 0 < or = x < 1, has been investigated by neutron diffraction (ND), impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and Monte Carlo simulations. In both series, Li(+) ions occupy unit cell faces, but Na(+) ions are located at A sites of the perovskite. From this fact, the amount of vacant A sites that participate in Li conductivity is given by the expression n(v) = [Li] + square, where square is the nominal vacancy concentration. Substitution of Li by Na decreases the amount of vacancies, reducing drastically the Li conductivity when n(v) approaches the percolation threshold of the perovskite conduction network. In disordered (Li(1-x)Na(x))(0.5)La(0.5)TiO(3) perovskites, the percolation threshold is 0.31; however, in ordered (Li(1-x)Na(x))(0.2)La(0.6)TiO(3) perovskites, this parameter changes to 0.26. Near the percolation threshold, the amount of mobile Li species deduced by (7)Li NMR spectroscopy is lower than that derived from structural formulas but higher than deduced from dc conductivity measurements. Conductivity values have been explained by Monte Carlo simulations, which assume a random walk for Li ions in the conduction network of the perovskite. In these simulations, distribution of vacancies conforms to structural models deduced from ND experiments.  相似文献   

2.
A series of perovskite type oxides La_(1-x)A_(x)MnO_3(x=0.1 for A=Li,Na,K;x=0.1~0.5 for A=Li)have been prepared by impregnation.Experimental results showed that the substitution of La~(3 ) by Li~ inLaMnO_(3 ?) greatly increased the selectivity to ethane and ethylene for theoxidative coupling of methane.Temperature-programmed desorption of oxygenproved the presence of oxygen vacancies in the oxide lattice.The higher Mn~(4 )/Mn_t ratio in oxide made the formation of oxygen vacancies easier on the oxidesurface.The general formula of the oxides is La_(1-x)Li_(x)Mn'V'_(y)O_(3-y),V=vacancy.  相似文献   

3.
New oxyfluorides Li(2x)Ca(1.5-x) square (0.5-x)M2O6F (M = Nb, Ta), belonging to the cubic pyrochlore structural type (Z = 8, a approximately 10.5 angstroms), were synthesized by solid state reaction for 0 < or = x < or = 0.5. XRD data allowed us to determine their structures from single crystals for the two alpha and beta-Ca(1.5) square (0.5)Nb2O6F forms and from powder samples for the others. This characterisation was completed by TEM and solid state 19F NMR experiments. For the Ca(1.5) square (0.5)M2O6F (x = 0) pyrochlore phases, the presence of a double ordering phenomenon is demonstrated, involving on one hand the Ca(2+) ions and the vacancies and on the other hand the oxide and the fluoride anions which are strictly located in the 8b sites of the Fd3m aristotype space group. The Ca(2+) ions/vacancies ordering leads to a reversible phase transition, a (P4(3)32) <--> beta (Fd3m). The 19F NMR study strongly suggests that, in the beta-phases, the fluoride ions are only on average at the centre of the Ca3 square tetrahedron. It shows that slightly different Ca-F distances occuring in alpha-Ca(1.5) square (0.5)Nb2O6F may be related to a more difficult thermal ionic and vacancies diffusion process than in the tantalate compound. This may explain the hysteresis phenomenon presented by the phase transition. A solid solution Li(2x)Ca(1.5-x) square (0.5-x) Ta2O6F (0 < or = x < or = 0.5) was prepared and the order-disorder phase transition observed for Ca(1.5) square (0.5)M2MO6F compounds disappears for all the other compositions where less or no more vacancies exist in the 16d sites. In the LiCaM2O6F compounds, the 19F NMR study allows us to determine the Ca(2+) and Li+ ions distributions around the fluoride ions and shows that the [FLi2Ca2] environment is clearly favoured.  相似文献   

4.
Hydrated BaSn(1-x)Y(x)O(3-x/2) is a protonic conductor that, unlike many other related perovskites, shows high conductivity even at high substitution levels. A joint multinuclear NMR spectroscopy and density functional theory (total energy and GIPAW NMR calculations) investigation of BaSn(1-x)Y(x)O(3-x/2) (0.10 ≤ x ≤ 0.50) was performed to investigate cation ordering and the location of the oxygen vacancies in the dry material. The DFT energetics show that Y doping on the Sn site is favored over doping on the Ba site. The (119)Sn chemical shifts are sensitive to the number of neighboring Sn and Y cations, an experimental observation that is supported by the GIPAW calculations and that allows clustering to be monitored: Y substitution on the Sn sublattice is close to random up to x = 0.20, while at higher substitution levels, Y-O-Y linkages are avoided, leading, at x = 0.50, to strict Y-O-Sn alternation of B-site cations. These results are confirmed by the absence of a "Y-O-Y" (17)O resonance and supported by the (17)O NMR shift calculations. Although resonances due to six-coordinate Y cations were observed by (89)Y NMR, the agreement between the experimental and calculated shifts was poor. Five-coordinate Sn and Y sites (i.e., sites next to the vacancy) were observed by (119)Sn and (89)Y NMR, respectively, these sites disappearing on hydration. More five-coordinated Sn than five-coordinated Y sites are seen, even at x = 0.50, which is ascribed to the presence of residual Sn-O-Sn defects in the cation-ordered material and their ability to accommodate O vacancies. High-temperature (119)Sn NMR reveals that the O ions are mobile above 400 °C, oxygen mobility being required to hydrate these materials. The high protonic mobility, even in the high Y-content materials, is ascribed to the Y-O-Sn cation ordering, which prevents proton trapping on the more basic Y-O-Y sites.  相似文献   

5.
The relationship between the electrochemical behavior and the arrangement of lithium/vacancies has been investigated with electrochemical Li removal in Li(x)M(y)Mn(2-y)O4 (x < or = 1.0, 0.0 < or = y < or = 0.3, M = Co, Cr). It was shown that the electrochemical removal proceeds via two voltage regions: (1) approximately 3.9 V at x > or = approximately 0.5 and (2) approximately 4.2 V at x < or = approximately 0.5. To understand the stepwise behavior, entropy measurement of reaction, DeltaS(obs), was performed by using the electrochemical methods. The changes of the sign in deltaS(obs) from negative to positive at the composition x approximately 0.50 in Li(x)M(y)Mn(2-y)O4 indicated that the ordered arrangement of Li/vacancies was formed with electrochemical Li removal. Moreover, such an ordering was suppressed by the substitution of Co3+ and Cr3+ for Mn3+. To clarify the nature and origin of Li/vacancy ordering, the Monte Carlo simulation was performed in view of Coulombic interaction. The simulation reproduced the formation of a new phase arising from Li/vacancy ordering at x = 0.50 in Li(x)Mn2O4. In addition, the ordered arrangement of Li/vacancy at x = 0.5 was perturbed by the trivalent M3+ replacement in spinel structure due to the local clustering of Li+ around M3+. Consequently, the electrochemical behavior in spinel LiMn2O4 was deeply related to the Coulombic interactions, proved by the fact that experimentally observed changes in entropy agreed well with Monte Carlo simulation based on the Coulombic interaction.  相似文献   

6.
The crystal structures of several oxides of the La(2/3)Li(x)Ti(1-x)Al(x)O(3) system have been studied by selected-area electron diffraction, high-resolution transmission electron microscopy, and powder neutron diffraction, and their lithium conductivity has been by complex impedance spectroscopy. The compounds have a perovskite-related structure with a unit cell radical2 a(p)x2 a(p)x radical2 a(p) (a(p)=perovskite lattice parameter) due to the tilting of the (Ti/Al)O(6) octahedra and the ordering of lanthanum and lithium ions and vacancies along the 2 a(p) axis. The Li(+) ions present a distorted square-planar coordination and are located in interstitial positions of the structure, which could explain the very high ionic conductivity of this type of material. The lithium conductivity depends on the oxide composition and its crystal microstructure, which varies with the thermal treatment of the sample. The microstructure of these titanates is complex due to formation of domains of ordering and other defects such as strains and compositional fluctuations.  相似文献   

7.
(7)Li and (6)Li nuclear magnetic resonance (NMR) experiments are carried out on the perovskite Li(3x)La(1/3-x)NbO(3). The results are compared to those obtained on the titanate Li(3x)La(2/3-x)TiO3 (LLTO) in order to investigate the effect, on the lithium ion dynamics, of the total substitution of Nb(5+) for Ti(4+) in the B-site of the ABO(3) perovskites. The XRD patterns analysis reveals that this substitution leads to a change in the distribution of the La(3+) ions in the structure. La(3+) ions distribution is very important, in regard to ionic conductivity, because these immobile ions can be considered as obstacles for the long-range Li+ motion. If compared to the titanates, the compounds of the niobate solid solution have a bigger unit cell volume, a smaller number of La(3+) ions, and a higher number of vacancies. These should favor the motion of the mobile ions into the structure. This is not experimentally observed. Therefore, the interactions between the mobile species and their environment greatly influence their mobility. (7)Li and (6)Li NMR relaxation time experiments reveal that the Li relaxation mechanism is not dominated by quadrupolar interaction. (7)Li NMR spectra reveal the presence of different Li+ ion sites. Some Li+ ions reside in an isotropic environment with no distortion, some others reside in weakly distorted environments. T(1), T(1)(rho), and T(2) experiments allow us to evidence two motions of Li+. As in LLTO, T(1) probes a fast motion of the Li+ ions inside the A-cage of the perovskite structure and T(1)(rho) a slow motion of these ions from A-cage to A-cage. At variance with what has been observed in LLTO, these different Li+ ions can be differentiated through the spin-lattice relaxation times, T(1) and T(1)(rho), as well as through the transverse relaxation time, T(2).  相似文献   

8.
Ten compounds belonging to the series of oxygen-deficient perovskite oxides Ca(2)Fe(2-x)Mn(x)O(5) and CaSrFe(2-x)Mn(x)O(5+y), where x = 1/2, 2/3, and 1 and y ≈ 0-0.5, were synthesized and investigated with respect to the ordering of oxygen vacancies on both local and long-range length scales and the effect on crystal structure and magnetic properties. For the set with y ≈ 0 the oxygen vacancies always order in the long-range sense to form the brownmillerite structure containing alternating layers of octahedrally and tetrahedrally coordinated cations. However, there is a change in symmetry from Pnma to Icmm upon substitution of Sr for one Ca for all x, indicating local T(d) chain (vacancy) disorder. In the special case of CaSrFeMnO(5) the neutron diffraction peaks broaden, indicating only short-range structural order on a length scale of ~160 ?. This reveals a systematic progression from Ca(2)FeMnO(5) (Pnma, well-ordered tetrahedral chains) to CaSrFeMnO(5) (Icmm, disordered tetrahedral chains, overall short-range order) to Sr(2)FeMnO(5) (Pm3m, destruction of tetrahedral chains in a long-range sense). Systematic changes occur in the magnetic properties as well. While long-range antiferromagnetic order is preserved, the magnetic transition temperature, T(c), decreases for the same x when Sr substitutes for one Ca. A review of the changes in T(c) for the series Ca(2)Fe(2-x)M(x)O(5), taking into account the tetrahedral/octahedral site preferences for the various M(3+) ions, leads to a partial understanding of the origin of magnetic order in these materials in terms of a layered antiferromagnetic model. While in all cases the preferred magnetic moment direction is (010) at low temperatures, there is a cross over for x = 0.5 to (100) with increasing temperature for both the Ca(2)Fe(2-x)Mn(x)O(5) and the CaSrFe(2-x)Mn(x)O(5) series. For the y > 0 phases, while a brownmillerite ordering of oxygen vacancies is preserved for the Ca(2) phases, a disordered Pm3m cubic perovskite structure is always found when Sr is substituted for one Ca. Long-range magnetic order is also lost, giving way to spin glass or cluster-glass-like behavior below ~50 K. For the x = 0.5 phase, neutron pair distribution function (NPDF) studies show a local structure related to brownmillerite ordering of oxygen vacancies. Neutron diffraction data at 3.8 K show a broad magnetic feature, incommensurate with any multiple of the chemical lattice, and with a correlation length (magnetic domain) of 6.7(4) ?.  相似文献   

9.
The structures, magnetism and ion transport properties of the ternary nitrides Li(3-x-y)M(x)N (M = Co, Ni, Cu; y= lithium vacancy) were examined by powder X-ray diffraction, solid-state NMR and SQUID magnetometry. Doping levels are achieved up to x approximately = 0.4 for M = Cu and Co, but much higher substitution levels (x approximately =1) are obtained in the Li-Ni-N system. Transition metals substitute for Li at the Li(1) interplanar site and the ensuing lithium vacancies are disordered within the [Li(2)N] planes. High substitution levels in the Li-Ni-N system lead to the formation of ordered phases. Diffusion parameters, including activation energies, correlation times and diffusion coefficients, were obtained from variable-temperature solid-state NMR measurements in several ternary compounds. SQUID magnetometry shows significant variations of the electronic properties with dopant and x. The properties of the ternary nitrides can be rationalised in terms of the identity of the dopant and the structural modifications arising from the substitution process.  相似文献   

10.
Cubic NaZn(13)-type (Fm-3c, Z = 8) BaAu(x)Zn(13-x) compounds in the regions 1 ≤ x ≤ 5.4 (a = 12.418(1)-12.590(1) ?) and 6.4 ≤ x ≤ 8 (a = 12.630(1)-12.660(1) ?) plus an ordered tetragonal variant near x = 6 (P4/nbm; a = 8.8945(4) ?, c = 12.646(1) ?; Z = 4) have been synthesized and characterized by means of X-ray diffraction. Although the cubic structure contains Zn-centered, mixed (Zn, Au) icosahedra connected in alternate orientations via mixed tetrahedral stars (TS), the icosahedron vertices are ordered in the tetragonal structure. Both the inner and the outer tetrahedra in the TS in the cubic phase consist of mixed Au and Zn atoms, whereas the tetragonal phase features three different coloring schemes: inner Zn and outer Au tetrahedra, vice versa, or mixed Au and Zn sites on both inner and outer tetrahedra. Barium atoms center 24-atom snub cuboctahedra. Ordering of Au and Zn in the tetragonal phase achieves the largest number of heteroatomic Au-Zn contacts and yields relatively larger Hamilton populations (-ICOHPs) compared with homoatomic counterparts according to LMTO-based electronic structure calculations and analysis. Larger overlap populations are also observed for inter- versus intraicosahedral interactions. The densities-of-states data suggest the phase is metallic with highly dispersed Au d bands and nearly free-electron-like s and p bands for both Au and Zn.  相似文献   

11.
A solid solution was found to exist in the quaternary Li(2)O-MgO-V(2)O(5)-MoO(3) system between the two phases Mg(2.5)VMoO(8) and Li(2)Mg(2)(MoO(4))(3). Both Mg(2.5)VMoO(8) and Li(2)Mg(2)(MoO(4))(3) are isostructural with the mineral lyonsite, and substitution according to the formula square(1/4-x/6)Li(4x/3)Mg(15/4-7x/6)V(3/2-x)Mo(3/2+x)O(12) (0 < or = x < or = 1.5, where square denotes a cation vacancy) demonstrates that a complete solid solution exits coupling the addition of molybdenum and lithium with the subtraction of cation vacancies, magnesium, and vanadium and vice versa. Vibrational Raman spectroscopy indicates that molybdenum-oxo double bonds preferentially associate with the cation vacancies.  相似文献   

12.
Different Li(4)SiO(4) solid solutions containing aluminum (Li(4+x)(Si(1-x)Al(x))O(4)) or vanadium (Li(4-x)(Si(1-x)V(x))O(4)) were prepared by solid state reactions. Samples were characterized by X-ray diffraction and solid state nuclear magnetic resonance. Then, samples were tested as CO(2) captors. Characterization results show that both, aluminum and vanadium ions, occupy silicon sites into the Li(4)SiO(4) lattice. Thus, the dissolution of aluminum is compensated by Li(1+) interstitials, while the dissolution of vanadium leads to lithium vacancies formation. Finally, the CO(2) capture evaluation shows that the aluminum presence into the Li(4)SiO(4) structure highly improves the CO(2) chemisorption, and on the contrary, vanadium addition inhibits it. The differences observed between the CO(2) chemisorption processes are mainly correlated to the different lithium secondary phases produced in each case and their corresponding diffusion properties.  相似文献   

13.
Deintercalated "Li(x)NiO2" materials (x = 0.25, 0.33, 0.50, 0.58, and 0.65) were obtained using the electrochemical route from the Li0.985Ni1.015O2 and Li0.993Ni1.007O2 compounds. Refinements of X-ray diffraction data using the Rietveld method show a good agreement with the phase diagram of the Li(x)NiO2 system studied earlier in this laboratory. Electronic conductivity measurements show a thermally activated electron-hopping process for the deintercalated Li0.5NiO2 phase. In the Li(x)NiO2 materials investigated (x = 0.25, 0.33, 0.50, and 0.58), 7Li NMR shows mobility effects leading to an exchanged signal at room temperature. A clear tendency for Li to be surrounded mainly by Ni3+ ions with the 180 degree configuration is observed, particularly, for strongly deintercalated materials with smaller Li+ and Ni3+ contents, even upon heating, when this mobility becomes very fast in the NMR time scale. This suggests that Li/vacancy hopping does occur on the NMR time scale but that Ni3+/Ni4+ hopping does not occur independently. The position of Li seems to govern the oxidation state of the Ni around it at any time; the electrons follow the Li ions to satisfy local electroneutrality and minimal energy configuration. The observed NMR shifts are compatible with the Li/vacancy and Ni3+/Ni4+ ordering patterns calculated by Arroyo y de Dompablo et al. for x = 0.25 and x = 0.50, but not for x = 0.33 and x = 0.58.  相似文献   

14.
A series of layered oxides of nominal composition SrFe(1-x)Mn(x)O(2) (x = 0, 0.1, 0.2, 0.3) have been prepared by the reduction of three-dimensional perovskites SrFe(1-x)Mn(x)O(3-δ) with CaH(2) under mild temperature conditions of 583 K for 2 days. The samples with x = 0, 0.1, and 0.2 exhibit an infinite-layer crystal structure where all of the apical O atoms have been selectively removed upon reduction. A selected sample (x = 0.2) has been studied by neutron powder diffraction (NPD) and X-ray absorption spectroscopy. Both techniques indicate that Fe and Mn adopt a divalent oxidation state, although Fe(2+) ions are under tensile stress whereas Mn(2+) ions undergo compressive stress in the structure. The unit-cell parameters progressively evolve from a = 3.9932(4) ? and c = 3.4790(4) ? for x = 0 to a = 4.00861(15) ? and c = 3.46769(16) ? for x = 0.2; the cell volume presents an expansion across the series from V = 55.47(1) to 55.722(4) ?(3) for x = 0 and 0.2, respectively, because of the larger effective ionic radius of Mn(2+) versus Fe(2+) in four-fold coordination. Attempts to prepare Mn-rich compositions beyond x = 0.2 were unsuccessful. For SrFe(0.8)Mn(0.2)O(2), the magnetic properties indicate a strong magnetic coupling between Fe(2+) and Mn(2+) magnetic moments, with an antiferromagnetic temperature T(N) above room temperature, between 453 and 523 K, according to temperature-dependent NPD data. The NPD data include Bragg reflections of magnetic origin, accounted for with a propagation vector k = ((1)/(2), (1)/(2), (1)/(2)). A G-type antiferromagnetic structure was modeled with magnetic moments at the Fe/Mn position. The refined ordered magnetic moment at this position is 1.71(3) μ(B)/f.u. at 295 K. This is an extraordinary example where Mn(2+) and Fe(2+) ions are stabilized in a square-planar oxygen coordination within an infinite-layer structure. The layered SrFe(1-x)Mn(x)O(2) oxides are kinetically stable at room temperature, but in air at ~170 °C, they reoxidize and form the perovskites SrFe(1-x)Mn(x)O(3-δ). A cubic phase is obtained upon reoxidation of the layered compound, whereas the starting precursor SrFeO(2.875) (Sr(8)Fe(8)O(23)) was a tetragonal superstructure of perovskite.  相似文献   

15.
Structural sites occupied by lithium in the rhombohedral LiTi2-xZrx(PO4)3 series (0 < or = x < or = 2) have been investigated by 7Li NMR spectroscopy. At room temperature, the XRD patterns of the end-members of the series display rhombohedral R3c symmetry in LiTi2(PO4)3 and triclinic C in LiZr2(PO4)3. In the first compound, Li ions occupy M1 sites; however, in the second one Li occupy intermediate M1/2 sites. As the temperature increases, a first-order displacive transformation is detected in the triclinic phase, but a second-order/disorder transition is detected in the rhombohedral phase. From the temperature dependence of the 7Li NMR quadrupole constant (CQ) of the two compounds, the evolution of M1 and M1/2 sites occupancy in the Nasicon conduction network has been deduced. At high temperatures, analyzed phases tend toward a disordered rhombohedral phase, in which both M1 and M1/2 sites are equally populated and in which lithium mobility is favored by the existence of vacant M1 sites. According to this study, this phase can also be obtained by substituting Ti by Zr in the LiTi2-xZrx(PO4)3 series.  相似文献   

16.
Two mechanisms of doping Li(3)NbO(4), which has an ordered, rock salt superstructure, have been established. In the "stoichiometric mechanism", the overall cation-to-anion ratio is maintained at 1:1 by means of the substitution 3Li(+) + Nb(5+) --> 4Ni(2+). In the "vacancy mechanism", Li(+) ion vacancies are created by means of the substitution 2Li(+) --> Ni(2+). Solid solution ranges have been determined for both mechanisms and a partial phase diagram constructed for the stoichiometric join. On the vacancy join, the substitution mechanism has been confirmed by powder neutron diffraction; associated with lithium vacancy creation, a dramatic increase in Li(+) ion conductivity occurs with increasing Ni content, reaching a value of 5 x 10(-4) Omega(-1) cm(-1) at 300 degrees C for composition x= 0.1 in the formula Li(3-2x)Ni(x)NbO(4). This is the first example of high Li(+) ion conductivity in complex oxides with rock salt-related structures.  相似文献   

17.
通过共沉淀法制备了M(OH)2(M=Mn, Ni)前驱体, 并与LiOH混合, 合成了锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2, 采用XRD、SEM和充放电实验对其进行表征. 研究结果表明, Li, Ni, Mn原子在M层中呈有序分布, 形成超结构; 富锂正极材料由亚微米的一次粒子团聚组成1~3 μm颗粒; 在2.0~4.8 V电位范围内, 充放电电流密度为10 mA/g时, 富锂正极材料表现出很高的可逆比容量, 达到200~240 mA·h/g, 同时具有良好的循环可逆性能.  相似文献   

18.
Zhou D  Pang LX  Guo J  Wang H  Yao X  Randall C 《Inorganic chemistry》2011,50(24):12733-12738
In the present work, the (K(0.5x)Bi(1-0.5x))(Mo(x)V(1-x))O(4) ceramics (0≤x ≤ 1.00) were prepared via the solid state reaction method and sintered at temperatures below 830 °C. At room temperature, the BiVO(4) scheelite monoclinic solid solution was formed in ceramic samples with x < 0.10. When x lies between 0.1-0.19, a BiVO(4) scheelite tetragonal phase was formed. The phase transition from scheelite monoclinic to scheelite tetragonal phase is a continuous, second order ferroelastic transition. High temperature X-ray diffraction results showed that this phase transition can also be induced at high temperatures about 62 °C for x = 0.09 sample, and has a monoclinic phase at room temperature. Two scheelite tetragonal phases, one being a BiVO(4) type and the other phase is a (K,Bi)(1/2)MoO(4) type, coexist in the compositional range 0.19 < x < 0.82. A pure (K,Bi)(1/2)MoO(4) tetragonal type solid solution can be obtained in the range 0.82 ≤ x ≤ 0.85. Between 0.88 ≤ x ≤ 1.0, a (K,Bi)(1/2)MoO(4) monoclinic solid solution region was observed. Excellent microwave dielectric performance with a relative dielectric permittivity around 78 and Qf value above 7800 GHz were achieved in ceramic samples near the ferroelastic phase boundary (at x = 0.09 and 0.10).  相似文献   

19.
The monoclinic perovskite BiCo(1-x) Fe(x) O(3) (x≈0.7) undergoes a second-order structural transition from tetragonal to monoclinic, which is accompanied by a rotation of the polarization vector from the [001] to [111] directions of a pseudo cubic cell. The crystal structure, determined by electron diffraction and powder synchrotron X-ray diffraction, was the same as that of Pb(Ti(1-x) Zr(x) )O(3) at the morphotropic phase boundary.  相似文献   

20.
Structural properties and the influence of d electrons' insertion in PbTiO(3) have been determined in the study of PbM(1-x)M(x)'O(3) (M, M' = Ti, Cr, and V) solid solutions by means of X-ray diffraction, high-resolution transmission electron microscopy, magnetization measurements, and strain mapping analysis. PbTi(1-x)V(x)O(3) is the only system that preserves the same space group (P4mm) for all x, whereas PbTi(1-x)Cr(x)O(3) and PbV(1-x)Cr(x)O(3) change to cubic (Pm ?3m) at x = 0.30 and 0.4, respectively. These values have been related with the percolation threshold for a cubic net (P(c) = 0.31). The microscopy study coincides with the X-ray diffraction determination, and neither supercell nor short-range order maxima are observed. However, for x ≥ 0.7 in PbTi(1-x)Cr(x)O(3) the presence of modulated zones is observed in both the electron diffraction pattern as well as high-resolution transmission electron micrographs, as is typical for PbCrO(3). (1) Furthermore, the tetragonal region in PbV(1-x)Cr(x)O(3) suffers a great stress because of the contrast of [Cr-O(6)] octahedra and [V-O(5)] square-based pyramids end members basic units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号