首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three cationic iridium complexes containing 4,7-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,10-phenanthroline (L(1)) and 4,7-bis(3',6'-di-tert-butyl-6-(3,6-di-tert-butyl-9H-carbazol-9-yl)-3,9'-bi(9H-carbazol)-9-yl)-1,10-phenanthroline (L(2)) as the ancillary ligands, namely, [Ir(ppy)(2)(L(1))]PF(6) (1), [Ir(ppy)(2)(L(2))]PF(6) (2) and [Ir(oxd)(2)(L(2))]PF(6) (3) (ppy is 2-phenylpyridine, oxd is 2,5-diphenyl-1,3,4-oxadiazole), have been designed and prepared. With more intramolecular rotational units on the ancillary ligand (L(2)), 2 and 3 possess a unique aggregation-induced phosphorescent emission (AIPE) property. This phenomenon was unprecedentedly observed in the cationic iridium(III) complexes. In order to investigate the underlying mechanism of this AIPE behavior, their photophysical, temperature-dependent aggregation properties as well as theoretical calculations, were performed. The results suggest that restricted intramolecular rotation is responsible for the AIPE of cationic complexes. Moreover, photoluminescent quantum yields in the neat film, thermal stabilities and off/on luminescence switching of 2 were investigated, revealing its potential application as a candidate for LECs and organic vapor sensing.  相似文献   

2.
Color‐tuning for phosphorescent emitters in organic light‐emitting diodes (OLEDs) across the entire visible spectrum is prerequisite to fulfil flexible full‐color displays and white solid‐state lighting. Heteroleptic 2‐phenylpyridine‐type (ppy‐type) Ir(III) and Pt(II) complexes as phosphorescent emitters have been well exploited in the electroluminescence (EL) field due to their outstanding EL performance. Furthermore, the photophysical characters of these heteroleptic Ir(III) and Pt(II) complexes are generally dominated by the nature of cyclometalating ppy‐type ligands. Accordingly, either sophisticated modification or judicious combination of different cyclometalating ppy‐type ligands will provide a wonderful platform to tune their emission color. In this personal account, we put a special emphasis on our contributions to the novel color‐tuning strategies in these heteroleptic ppy‐type Ir(III) and Pt(II) complexes. In addition, afforded by our novel color‐tuning strategies, ambipolar character or enhanced electron injection/transport (EI/ET) features can be furnished to bring high EL performances.  相似文献   

3.
A new series of iridium(III) mixed ligand complexes TBA[Ir(ppy)(2)(CN)(2)] (1), TBA[Ir(ppy)(2)(NCS)(2)] (2), TBA[Ir(ppy)(2)(NCO)(2)] (3), and [Ir(ppy)(2)(acac)] (4) (ppy = 2-phenylpyridine; acac = acetoylacetonate, TBA = tetrabutylammonium cation) have been developed and fully characterized by UV-vis, emission, IR, NMR, and cyclic voltammetric studies. The lowest energy MLCT transitions are tuned from 463 to 494 nm by tuning the energy of the HOMO levels. These complexes show emission maxima in the blue, green, and yellow region of the visible spectrum and exhibit unprecedented phosphorescence quantum yields, 97 +/- 3% with an excited-state lifetimes of 1-3 micros in dichloromethane solution at 298 K. The near-unity quantum yields of these complexes are related to an increased energy gap between the triplet emitting state and the deactivating e(g) level that have been achieved by meticulous selection of ligands having strong ligand field strength. Organic light-emitting devices were fabricated using the complex 4 doped into a purified 4,4'-bis(carbazol-9-yl)biphenyl host exhibiting a maximum of the external quantum efficiencies of 13.2% and a power efficiency of 37 lm/W for the 9 mol % doped system.  相似文献   

4.
Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Br?nsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(μ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(μ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(μ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.  相似文献   

5.
He L  Ma D  Duan L  Wei Y  Qiao J  Zhang D  Dong G  Wang L  Qiu Y 《Inorganic chemistry》2012,51(8):4502-4510
Intramolecular π-π stacking interaction in one kind of phosphorescent cationic iridium complexes has been controlled through fluorination of the pendant phenyl rings on the ancillary ligands. Two blue-green-emitting cationic iridium complexes, [Ir(ppy)(2)(F2phpzpy)]PF(6) (2) and [Ir(ppy)(2)(F5phpzpy)]PF(6) (3), with the pendant phenyl rings on the ancillary ligands substituted with two and five fluorine atoms, respectively, have been synthesized and compared to the parent complex, [Ir(ppy)(2)(phpzpy)]PF(6) (1). Here Hppy is 2-phenylpyridine, F2phpzpy is 2-(1-(3,5-difluorophenyl)-1H-pyrazol-3-yl)pyridine, F5phpzpy is 2-(1-pentafluorophenyl-1H-pyrazol-3-yl)-pyridine, and phpzpy is 2-(1-phenyl-1H-pyrazol-3-yl)pyridine. Single crystal structures reveal that the pendant phenyl rings on the ancillary ligands stack to the phenyl rings of the ppy ligands, with dihedral angles of 21°, 18°, and 5.0° between least-squares planes for complexes 1, 2, and 3, respectively, and centroid-centroid distances of 3.75, 3.65, and 3.52 ? for complexes 1, 2, and 3, respectively, indicating progressively reinforced intramolecular π-π stacking interactions from complexes 1 to 2 and 3. Compared to complex 1, complex 3 with a significantly reinforced intramolecular face-to-face π-π stacking interaction exhibits a significantly enhanced (by 1 order of magnitude) photoluminescent efficiency in solution. Theoretical calculations reveal that in complex 3 it is unfavorable in energy for the pentafluorophenyl ring to swing by a large degree and the intramolecular π-π stacking interaction remains on the lowest triplet state.  相似文献   

6.
Novel mixed-ligand Ir(III) complexes, [Ir(L)(NwedgeC)X]n+ (L = N/\C/\N or N/\N/\N; X = Cl, Br, I, CN, CH3CN, or -CCPh; n = 0 or 1), were synthesized, where N/\CwedgeN = bis(N-methylbenzimidazolyl)benzene (Mebib) and bis(N-phenylbenzimidazolyl)benzene (Phbib), N/\N/\N = bis(N-methylbenzimidazolyl)pyridine (Mebip), and N/\C = phenylpyridine (ppy) derivatives. The X-ray crystal structures of [Ir(Phbib)(ppy)Cl] and [Ir(Mebib)(mppy)Cl] [mppy = 5-methyl-2-(2'-pyridyl)phenyl] indicate that the nitrogen atom of the ppy ligand is located trans to the coordinating carbon atom in Me- or Phbib, while the coordinating carbon atom in ppy occupies the trans position of Cl. [Ir(Mebip)(ppy)Cl]+ showed a quasireversible Ir(III/IV) oxidation wave at +1.05 V, while the Ir complexes, [Ir(Mebib)(ppy)Cl], were oxidized at +0.42 V versus Fc/Fc+. The introduction of an Ir-C bond in [Ir(Mebib)(ppy)Cl] induces a large potential shift of 0.63 V in a negative direction. Further, the oxidation potential of [Ir(Mebib)(Rppy)X] was altered by the substitution of R, R', and X groups. Compared to the oxidation potential, the first reduction potential revealed an almost constant value at -2.36 to -2.46 V for [Ir(L)(ppy)Cl] (L = Mebib and Phbib) and -1.52 V for [Ir(Mebip)(ppy)Cl. The UV-vis spectra of [Ir(Mebib)(R-ppy)X] show a clear singlet metal-to-ligand charge-transfer transition around 407 approximately 425 nm and a triplet metal-to-ligand charge-transfer transition at 498 approximately 523 nm. [Ir(Mebip)(ppy)Cl]+ emits at 610 nm with a luminescent quantum yield of Phi = 0.16 at room temperature. The phosphorescence of [Ir(Mebib)(ppy)X] was observed at 526 nm for X = CN and 555 nm for X = Cl with the high luminescent quantum yields, Phi = 0.77 approximately 0.86, at room temperature. [Ir(Phbib)(ppy)Cl] shows the emission at 559 nm with a luminescent quantum yield of Phi = 0.95, which is an unprecedentedly high value compared to those of other emissive metal complexes. Compared to the luminescent quantum yields of the Ir(ppy)2(L) derivatives and [Ir(Mebip)(ppy)Cl]+, the neutral Ir complexes, [Ir(L)(R-ppy)X] (L = Me- or Phbib), reveal very high quantum yields and large radiative rate constants (kr) ranging from 3.4 x 10(5) to 5.5 x 10(5) s(-1). The density functional theory calculation suggests that these Ir complexes possess dominantly metal-to-ligand charge-transfer and halide-to-ligand charge-transfer excited states. The mechanism for a high phosphorescence yield in [Ir(bib)(ppy)X] is discussed herein from the perspective of the theoretical consideration of radiative rate constants using perturbation theory and a one-center spin-orbit coupling approximation.  相似文献   

7.
Iridium(III) complexes with intense phosphorescence in solution have been widely applied in organic light-emitting diodes, chemosensors and bioimaging. However, little attention has been paid to iridium(III) complexes showing weak phosphorescence in solution and enhanced phosphorescence emission in the solid state (EPESS). In the present study, two β-diketonate ligands with different degrees of conjugation, 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (HL1) and 1-phenyl-3-methyl-4-phenylacetyl-5-pyrazolone (HL2), have been synthesized to be used as ancillary ligands for two iridium(III) complexes, Ir(ppy)(2)(L1) and Ir(ppy)(2)(L2) (Hppy = 2-phenylpyridine). The two complexes have been characterized by single-crystal X-ray crystallography, (1)H NMR and elemental analysis. Interestingly, Ir(ppy)(2)(L1) is EPESS-active whereas Ir(ppy)(2)(L2) exhibits moderately intense emission both in solution and as a neat film, indicating that the degree of conjugation of the β-diketone ligands determines the EPESS-activity. The single-crystal X-ray analysis has indicated that there are π-π interactions between the adjacent ppy ligands in Ir(ppy)(2)(L1) but not in Ir(ppy)(2)(L2). Finally, EPESS-active Ir(ppy)(2)(L1) has been successfully embedded in polymer nanoparticles and used as a luminescent label in bioimaging.  相似文献   

8.
Three novel cyclometalated ligands 1-benzyl-2-phenyl-1H-benzoimidazole(BPBM), 1-(4-methoxy-benzyl)-2-(4-methoxy-phenyl)-1H-benzoimidazole(MBMPB) and 4-[2-(4-dimethylamino-phenyl)-benzoinidazol-1-ylmethyl]-phenyl-dimethyl-amine(DBPA) were designed and synthesized, and the corresponding highly efficiency green-emitting phosphorescent iridium complexes Ir(BPBM)2(acac)(1), Ir(MBMPB)2(acac)(2) and Ir(DPBA)2(acac) (3) with acetylacetone(acac) as auxiliary ligand were also synthesized. The ligands are functionalized by bulky non-planarity substituents, thus the phosphorescent concentration quenching is substantially suppressed, and all the complexes exhibit bright photoluminescence(PL) in solid state. The photo-physical properties of the three iridium complexes were researched in detail. The results indicate that they have potential application in fabricating non-doped electrophosphorescence device.  相似文献   

9.
New functionalized phenylpyridine ligands and their derived heteroleptic cyclometalated Ir(III) complexes have been synthesized. The complexes possess a combination of important properties: (i) blue emission, (ii) good photoluminescence quantum yields, and (iii) good solubility in organic solvents, making them very attractive as phosphorescent dopant emitters for solution-processable light-emitting devices.  相似文献   

10.
We report the synthesis, structure, and photophysical and electroluminescent (EL) properties of a series of heteroleptic bis(pyridylphenyl)iridium(III) complexes with various ancillary guanidinate ligands. The reaction of the bis(pyridylphenyl)iridium(III) chloride [(ppy)(2)Ir(μ-Cl)](2) with the lithium salt of various guanidine ligands Li{(N(i)Pr)(2)C(NR(1)R(2))} at 80 °C gave in 60-80% yield the corresponding heteroleptic bis(pyridylphenyl)/guanidinate iridium(III) complexes having a general formula of [(ppy)(2)Ir{(N(i)Pr)(2)C(NR(1)R(2))}], where NR(1)R(2) = NPh(2) (1), N(C(6)H(4)(t)Bu-4)(2) (2), carbazolyl (3), 3,6-bis(tert-butyl)carbazolyl (4), N(C(6)H(4))(2)S (5), N(C(6)H(4))(2)O (6), indolyl (7), NEt(2) (8), N(i)Pr(2) (9), N(i)Bu(2) (10), and N(SiMe(3))(2) (11). These heteroleptic cyclometalated (C^N) iridium(III) complexes showed intense absorption bands in the UV region assignable to π-π* transitions and weaker metal-to-ligand charge-transfer transitions extending to the visible region. These complexes also showed intense emissions at room temperature. Their photoluminescence spectra were influenced to some extent by the ancillary guanidinate ligands, giving λ(max) values in the range of 528-560 nm with quantum yields (Φ) of 0.16-0.37 and lifetimes of 0.61-1.43 μs. Organic light-emitting diodes were fabricated by the use of these complexes as dopants in various concentrations (5-100%) in a N,N'-dicarbazolylbiphenyl host. High current efficiency (η(c); up to 137.4 cd/A) and power efficiency (η(p); up to 45.7 lm/W) were observed under appropriate conditions. Their high EL efficiency may result from efficient trapping and radiative relaxation of the excitons formed in the EL process. Because of the steric hindrance of the guanidinate ligands, no significant intermolecular interaction was observed in these complexes, thus leading to the reduction of self-quenching and triplet-triplet annihilation at high currents. The EL emission color could be changed in the range of green to yellow by choosing appropriate guanidinate ligands.  相似文献   

11.
Novel 2‐(1‐substituted‐1H‐1,2,3‐triazol‐4‐yl)pyridine (pytl) ligands have been prepared by “click chemistry” and used in the preparation of heteroleptic complexes of Ru and Ir with bipyridine (bpy) and phenylpyridine (ppy) ligands, respectively, resulting in [Ru(bpy)2(pytl‐R)]Cl2 and [Ir(ppy)2(pytl‐R)]Cl (R=methyl, adamantane (ada), β‐cyclodextrin (βCD)). The two diastereoisomers of the Ir complex with the appended β‐cyclodextrin, [Ir(ppy)2(pytl‐βCD)]Cl, were separated. The [Ru(bpy)2(pytl‐R)]Cl2 (R=Me, ada or βCD) complexes have lower lifetimes and quantum yields than other polypyridine complexes. In contrast, the cyclometalated Ir complexes display rather long lifetimes and very high emission quantum yields. The emission quantum yield and lifetime (Φ=0.23, τ=1000 ns) of [Ir(ppy)2(pytl‐ada)]Cl are surprisingly enhanced in [Ir(ppy)2(pytl‐βCD)]Cl (Φ=0.54, τ=2800 ns). This behavior is unprecedented for a metal complex and is most likely due to its increased rigidity and protection from water molecules as well as from dioxygen quenching, because of the hydrophobic cavity of the βCD covalently attached to pytl. The emissive excited state is localized on these cyclometalating ligands, as underlined by the shift to the blue (450 nm) upon substitution with two electron‐withdrawing fluorine substituents on the phenyl unit. The significant differences between the quantum yields of the two separate diastereoisomers of [Ir(ppy)2(pytl‐βCD)]Cl (0.49 vs. 0.70) are attributed to different interactions of the chiral cyclodextrin substituent with the Δ and Λ isomers of the metal complex.  相似文献   

12.
We report the synthesis and characterization of two cationic iridium(III) complexes with dendritic carbazole ligands as ancillary ligands, namely, [Ir(ppy)(2)L3]PF(6) (1) and [Ir(ppy)(2)L4]PF(6) (2), where L3 and L4 represent 3,8-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,10-phenanthroline and 3,8-bis(3',6'-di-tert-butyl-6-(3,6-di-tert-butyl-9H-carbazol-9-yl)-3,9'-bi(9H-carbazol)-9-yl)-1,10-phenanthroline, respectively. Their photophysical properties have been investigated and compared. The results have shown that complex 2 is aggregation-induced phosphorescent emission (AIPE) active and exhibits the highest photoluminescent quantum yield (PLQY) of 16.2% in neat film among the reported cationic Ir(III) complexes with AIPE activity. In addition, it also enjoys redox reversibility, good film-forming ability, excellent thermal stability as well as off/on luminescence switching properties, revealing its potential application as a candidate for light-emitting electrochemical cells and organic vapor sensing. To explore applications in biology, 2 was used to image cells.  相似文献   

13.
Three new bis-cyclometalated iridium(III) complexes, of general formula [Ir(2-phenylpyridine)(2)(L)](+), are reported. The compounds contain a dipyridine-type ligand (L) derived from di-2-pyridylketone (dipyridin-2-ylmethanol, 2,2'-(hydrazonomethylene)dipyridine and 3-hydroxy-3,3-di(pyridine-2-yl)propanenitrile) and were synthesized through two different reaction pathways. The alternative synthetic pathway herein proposed, namely the direct reactions on the complex [Ir(2-phenylpyridine)(2)(2,2'-dipyridylketone)](+), overcame the inconveniences encountered with the standard reaction between the dimeric precursor [Ir(2-phenylpyridine)(2)(μ-Cl)](2) and the ancillary ligands (L). The photophysical characterization of the iridium complexes reveals that modifications on the ancillary ligand introduce large changes in the photophysical behaviour of the complexes. High emission quantum yield is associated with the presence of a saturated carbon between the two pyridyl moieties: [Ir(2-phenylpyridine)(2)(2,2'-dipyridylketone)](+) and [Ir(2-phenylpyridine)(2)(2,2'-(hydrazonomethylene)dipyridine)](+) are extremely low emissive, while [Ir(2-phenylpyridine)(2)(dipyridin-2-ylmethanol)](+) and [Ir(2-phenylpyridine)(2)(3-hydroxy-3,3-di(pyridine-2-yl)propanenitrile)](+) are good photoemitters. DFT and TD-DFT calculations confirmed the mixed LC/MLCT character of the excited states involved in the absorption and emission processes and highlighted the role of the π-conjugation between the two subunits of the ancillary ligand in determining the nature of the LUMO.  相似文献   

14.
A new series of para-substituted 2,3-diphenyl-5-hydroxyquinoxaline ligands (LH(n)) were synthesised and characterised. These ligands were prepared in high yield via a two-step synthetic method. Four novel heteroleptic iridium(III) complexes were correspondingly prepared in high yield giving [Ir(ppy)(2)(L(n))]. Two X-ray crystallographic studies were undertaken on LH(3) and [Ir(ppy)(2)(L(2))] with each confirming the proposed formulations, with the complex showing the O,N-coordination mode of the quinoxalinato ligand. Density functional theoretical calculations were performed, firstly to compare the coordinated quinoxalinato system with the related quinolinato analogue, and secondly to probe the influence of the variation in para-substitution on the ancillary ligand. The calculations suggest that for either the quinoline or quinoxaline systems ligand-centred character appears to dominate the HOMO and LUMOs. Experimental electrochemical and spectroscopic characterisation showed that the subtle variations in absorption and emission wavelengths are probably due to ligand-dominated transitions that are influenced by the electronic nature of the para-substituted phenyl units in coordinated L(n).  相似文献   

15.
Two novel iridium(III) complexes, [Ir(dfppy)(2)(pmc)] and [Ir(ppy)(2)(pmc)] (dfppy = 2-(4',6'-difluoro-phenyl)pyridine, ppy = 1-phenyl-pyridine), were designed and synthesized using 2-carboxyl-pyrimidine (Hpmc) as an ancillary ligand. Single crystals were obtained and characterized by single crystal X-ray diffraction. The tetrametallic complexes {[(C^N)(2)Ir(μ-pmc)](3)EuCl(3)} (C^N = dfppy, ppy) were synthesized using the iridium(III) complexes as "ligands". Photophysical and theoretical studies indicate that [Ir(dfppy)(2)(pmc)] is more suitable for sensitizing the emission of Eu(III) ions than [Ir(ppy)(2)(pmc)].  相似文献   

16.
开发了无催化剂条件下4-羟基烷基-2-炔酸乙酯与N-杂环芳基甲基-N-2,2-二氟乙基-1-胺的串联反应.应用该反应在甲醇中回流,以39%~83%的收率合成了一系列4-(N-(2,2-二氟乙基)(N-杂环芳基甲基)氨基)-5,5-二取代呋喃-2(5H)-酮,其结构经1H NMR,13C NMR和HR-ESI-MS表征,并进一步通过3-氯-4-(N-2,2-二氟乙基)(N-嘧啶-5-基甲基胺基)-5,5-螺(4-甲氧基环己基)呋喃-2(5H)-酮(8)的晶体衍射间接证实.测试了所合成化合物的生物活性,结果表明,在600μg·mL^-1浓度时4-(N-2,2-二氟乙基)(N-6-氯吡啶-3-基甲基胺基)-5,5-二甲基呋喃-2(5H)-酮(3a)和4-(N-2,2-二.氟乙基)(N-6-氟吡啶-3-基甲基胺基)-5,5-二甲基呋喃-2(5H)-酮(3c)对桃蚜的死亡率均为100%.  相似文献   

17.
The syntheses and study of the spectroscopic, redox, and photophysical properties of a new set of species based on Ir(III) cyclometalated building blocks are reported. This set includes three dinuclear complexes, that is, the symmetric (with respect to the bridging ligand) diiridium species [(ppy)(2)Ir(mu-L-OC(O)-C(O)O-L)Ir(ppy)(2)][PF(6)](2) (5; ppy = 2-phenylpyridine anion; L-OC(O)-C(O)O-L = bis[4-(6'-phenyl-2,2'-bipyridine-4'-yl)phenyl]-benzene-1,4-dicarboxylate), the asymmetric diiridium species [(ppy)(2)Ir(mu-L-OC(O)-L)Ir(ppy)(2)][PF(6)](2) (3; L-OC(O)-L = 4-([(6'-phenyl-2,2'-bipyridine-4'-yl)benzoyloxy]phenyl)-6'-phenyl-2,2'-bipyridine), and the mixed-metal Ir-Re species [(ppy)(2)Ir(mu-L-OC(O)-L)Re(CO)(3)Br][PF(6)] (4). Syntheses, characterization, and spectroscopic, photophysical, and redox properties of the model mononuclear compounds [Ir(ppy)(2)(L-OC(O)-L)][PF(6)] (2) and [Re(CO)(3)(L-COOH)Br] (6; L-COOH = 4'-(4-carboxyphenyl)-6'-phenyl-2,2'-bipyridine) are also reported, together with the syntheses of the new bridging ligands L-OC(O)-L and L-OC(O)-C(O)O-L. The absorption spectra of all the complexes are dominated by intense spin-allowed ligand-centered (LC) bands and by moderately intense spin-allowed metal-to-ligand charge-transfer (MLCT) bands. Spin-forbidden MLCT absorption bands are also visible as low-energy tails at around 470 nm for all the complexes. All the new species exhibit metal-based irreversible oxidation and bipyridine-based reversible reduction processes in the potential window investigated (between +1.80 and -1.70 V vs SCE). The redox behavior indicates that the metal-based orbitals are only weakly interacting in dinuclear systems, whereas the two chelating halves of the bridging ligands exhibit noticeable electronic interactions. All the complexes are luminescent both at 77 K and at room temperature, with emission originating from triplet MLCT states. The luminescence properties are temperature- and solvent-dependent, in accord with general theories: emission lifetimes and quantum yields increase on passing from acetonitrile to dichloromethane fluid solution and from room-temperature fluid solution to 77 K rigid matrix. In the dinuclear mixed-chromophore species 3 and 4, photoinduced energy transfer across the ester-linked bridging ligands seems to occur with low efficiency.  相似文献   

18.
Three novel Ir(III) complexes, (ppy)2Ir(L-alanine) (Ir1) (ppy = 2-phenylpyridine), (F4ppy)2Ir(L-alanine) (Ir2) (F4ppy = 2-(4-fluorophenyl)pyridine), and (F2,4,5ppy)2Ir(L-alanine) (Ir3) (F2,4,5ppy = 2-(2,4,5-trifluorophenyl)pyridine), based on simple L-alanine as ancillary ligands were synthesized and investigated. Due to the introduction of fluorine substituents on the cyclometalated ligands, complexes Ir1–Ir3 exhibited yellow to sky-blue emissions (λem = 464–509 nm) in acetonitrile solution. The photoluminescence quantum yields (PLQYs) of Ir1–Ir3 ranged from 0.48–0.69, of which Ir3 with sky-blue luminescence had the highest PLQY of 0.69. The electrochemical study and density functional theory (DFT) calculations show that the highest occupied molecular orbital (HOMOs) energy of Ir1–Ir3 are stabilized by the introduction of fluorine substituents on the cyclometalated ligands, while L-alanine ancillary ligand has little contribution to HOMOs and lowest unoccupied molecular orbitals (LUMOs). Moreover, Ir1–Ir3 presented an excellent response to Cu2+ with a high selectivity, strong anti-interference ability, and short response time. Such a detection was based on significant phosphorescence quenching of their emissions, showing the potential application in chemosensors for Cu2+.  相似文献   

19.
A series of new monocationic iridium(iii) complexes [Ir(C^N)(2)(N^N)]PF(6) with "large-surface"α,α'-diimin ligands N^N (dap = 1,12-diazaperylene, dmedap = 2,11-dimethyl-1,12-diazaperylene, dipdap = 2,11-diisopropyl-1,12-diazaperylene) and different cyclometalating ligands C^N (piq = 1-phenylisoquinoline, bzq = benzo[h]quinoline, ppz = 1-phenylpyrazole, thpy = 2-(2-thienyl)pyridine, ppy = 2-phenylpyridine, meppy = 2-(4-methylphenyl)pyridine, dfppy = 2-(2,4-difluorophenyl)pyridine) were synthesized. The solid structures of the complexes [Ir(piq)(2)(dap)]PF(6), [Ir(bzq)(2)(dap)]PF(6), [Ir(ppy)(2)(dipdap)]PF(6), [Ir(piq)(2)(dmedap)]PF(6), [Ir(ppy)(2)(dap)]PF(6) and [Ir(ppz)(2)(dap)]PF(6) are reported. In [Ir(piq)(2)(dap)]PF(6), the dap ligand and one of the piq ligands of each cationic complex are involved in π-π stacking interactions forming supramolecular channels running along the crystallographic c axis. In the crystalline [Ir(bzq)(2)(dap)]PF(6)π-π stacking interactions between the metal complexes lead to the formation of a 2D layer structure. In addition, CH-π interactions were found in all compounds, which are what stabilizes the solid structure. In particular, a significant number of them were found in [Ir(piq)(2)(dap)]PF(6) and [Ir(bzq)(2)(dap)]PF(6). The crystal structures of [Ir(ppy)(2)(dipdap)]PF(6) and [Ir(ppy)(2)(dmedap)]PF(6) are also presented, being the first examples of bis-cyclometalated iridium(iii) complexes with phenanthroline-type α,α'-diimin ligands bearing bulky alkyl groups in the neighbourhood of the N-donor atoms. These ligands implicate a distorted octahedral coordination geometry that in turn destabilized the Ir-N(N^N) bonds. The new iridium(iii) complexes are not luminescent. All compounds show an electrochemically irreversible anodic peak between 1.15 and 1.58 V, which is influenced by the different cyclometalated ligands. All of the new complexes show two reversible successive one-electron "large-surface" ligand-centred reductions around -0.70 V and -1.30 V. Electrospray ionisation mass spectrometry (ESI-MS) and collision induced decomposition (CID) measurements were used to investigate the stability of the new complexes. Thereby, the stability agreed well with the order of the Ir-N(N^N) bond lengths.  相似文献   

20.
Liu Y  Li M  Zhao Q  Wu H  Huang K  Li F 《Inorganic chemistry》2011,50(13):5969-5977
Phosphorescent iridium(III) complexes have been attracting increasing attention in applications as luminescent chemosensors. However, no instance of an iridium(III) complex being used as a molecular logic gate has hitherto been reported. In the present study, two iridium(III) complexes, [Ir(ppy)(2)(PBT)] and [Ir(ppy)(2)(PBO)], have been synthesized (PBT, 2-(2-Hydroxyphenyl)-benzothiazole; PBO, 2-(2-hydroxyphenyl)-benzoxazole), and their chemical structures have been characterized by single-crystal X-ray analysis. Theoretical calculations and detailed studies of the photophysical and electrochemical properties of these two complexes have shown that the N^O ligands dominate their luminescence emission properties. Moreover, [Ir(ppy)(2)(PBT)], containing a sulfur atom in the N^O ligand, can serve as a highly selective chemodosimeter for Hg(2+) with ratiometric and naked-eye detection, which is associated with the dissociation of the N^O ligand PBT from the complex. Furthermore, complex [Ir(ppy)(2)(PBT)] has been further developed as an AND and INHIBIT logic gate with Hg(2+) and histidine as inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号