首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In order to consider the thermal and electrical coherent transport in a mesoscopic conductor under the influence of electron-electron interaction, in this paper, we establish a method in terms of which one can analytically obtain the Hartree self-consistent potential instead of computing it by the numerical iterative procedure as usual, which is convenient for us to describe the thermal and electric current flow through a mesoscopic conductor. If we study the electron-electron interaction at the Hartree approximation level, the Hartree potential satisfies the Poisson equation and Schroedinger equation, so when we expand the action function S(x) by Planck constant h, the self-consistent potential and the wavefunction can be solved analytically order by order, and the thermal and electrical conductance can thus be obtained readily. However, we just show the quantum corrections up to the second order.  相似文献   

2.
In this paper, we try to present a way in terms of which one can analytically obtain the Hartree self-consistent potential instead of computing it by the numerical iterative procedure as usual, which is convenient for us to describe the current flow through a mesoscopic conductor. In our treatment, we expand the action function S(x) by Planck constant ħ, then the self-consistent potential and the wavefunction can be solved analytically order by order starting from the Poisson equation and quantum Hamilton-Jacobian equation, the differential conductance and quantum capacitance can thus be obtained naturally. In our paper, we show the quantum corrections up to the second order, and the electron-electron interaction is considered only at the Hartree approximation level.  相似文献   

3.
赵宏康  王清 《计算物理》2005,22(2):149-154
应用非平衡格林函数方法研究通过环形碳纳米管-量子点耦合系统的介观输运.相干隧穿与环形碳纳米管和量子点各自的能级结构有强烈的依赖关系,阿哈郎诺夫-玻姆效应使能级周期性变化,隧穿电流则随磁通量作周期性振荡.环形碳纳米管的具体纳米结构显示出金属-半导体相变特性,这种行为也在输出电流中体现出来.子系统量子能级的匹配与失配关系在介观输运过程中起重要作用.  相似文献   

4.
We develop a theory for the nonequilibrium coherent transport through a mesoscopic region, based on thenonequilibrium Green function technique. The theory requires the weak coupling bet. ween the central mesoscopic regionand the multiple electrodes, but allows arbitrary hopping and interaction in the central region. An equation determiningthe nonequilibrium distribution in the central interacting region is derived and plays an important role in the theory.The theory is applied to two special cases for demonstrations, revealing the novel effects associated with the combinationof phase coherence, Coulomb interaction, and nonequilibrium distribution.  相似文献   

5.
Time-dependent interference behaviors on currents transporting through a mesoscopic system are investigated by using the Keldysh nonequilibrium Green function technique. The system is composed of a quantum dot coupled with two electron reservoirs. The electrons in the quantum dot are perturbed by two microwave fields (MWFs) through gate. The MWFs cause the energy level splitting in the quantum dot to form multi-channel for the tunneling current, and these branches of current interfere to produce stable oscillation. The resulting oscillation of current is strongly associated with frequency relations between MWFs. The timedependent current is the consequence of resonant effects for electrons resonating with quantum dot state and with MWFs. We present numerical calculations for the cases where the Coulomb interaction U = 0. Negative temporal current and differential conductance are observed even if the dc bias is not small. We compare the results with corresponding quantities in the system perturbed by single MWF.  相似文献   

6.
By means of the thermal field dynamics theory invented by Takahashi and Umezawa, we study the quantum effects of a nondissipative mesoscopic RLC circuit at a finite temperature.  相似文献   

7.
双stub介观环结构中的电子输运特征   总被引:2,自引:0,他引:2       下载免费PDF全文
采用量子波导理论研究了双stub介观环结构中电子输运特性。结果表明电子透射系数随stub的长度和环的大小而周期地振动,对环的周长和stub的长度做适当的调整,能使电子输运达到100%。并且比较了单stub介观环结构和双stub介观环结构对电子输运的影响,发现双stub的介观环结构对电子输运调制要比单stub介观环结构好。理论研究不仅对基础物理而且对量子器件研究均有重要意义。  相似文献   

8.
The Schrödinger equation of the mesoscopic capacitance coupled circuit with an arbitrary power source is solved by means of two step unitary transformation. The original Hamiltonian transformed to a very simple form by unitary operators so that it can be easily treated. We derived the exact full wave functions in Fock state. By making use of these wave functions and introducing the Lewis--Riesenfeld invariant operator, the thermal state have been constructed. The fluctuations of charges and currents are evaluated in thermal state. For T→ 0, the uncertainty products between charges and currents in thermal state recovers exactly to that of Fock state with n, m=0.  相似文献   

9.
The continuous-variable (CV) entanglement between two mesoscopic Josephson junctions is studied and the time-dependent characteristic function in Wigner representation for the Josephson junction subsystem driven by a singlemode thermal field is analytically obtained. It is found that an initial lowest energy state of the junction subsystem can evolve into a two-mode entangled Gaussian state through the interaction with the thermal radiation field. Furthermore, we investigate the influence of the temperature on the entanglement of the junctions and find that the CV entanglement of the two junctions shows the critical behavior with respect to the temperature.  相似文献   

10.
本文介绍一种直接测量散热率新方法.进而测出不良导体的热系数。该方法,减小了由间接测量散热率所带来的误差,实验装置简单,操作方便,参数少,测量结果的精确性和重复性都有较大提高,更重要的是这一新的实验方法突出了物理思想。  相似文献   

11.
With the help of scattering-matrix method, the acoustic phonon ballistic transmission and the thermal conductivity are studied detailedly in a four-terminal structure. We find that the transmission coefficients and the reduced thermal conductance for each region sensitively depend on geometric parameters, and are of quantum character, but the reduced total thermal conductance for all regions seems independent of structure parameters when the temperature is not very low. Our results show that one can control the thermal conductivity for each region to match practical requirements in devices by adjusting the geometric parameters.  相似文献   

12.
With the help of scattering-matrix method, the acoustic phonon ballistic transmission and the thermal conductivity are studied detailedly in a four-terminal structure. We find that the transmission coefficients and the reduced thermal conductance for each region sensitively depend on geometric parameters, and are of quantum character, but the reduced total thermal conductance for all regions seems independent of structure parameters when the temperature is not very low. Our results show that one can control the thermal conductivity for each region to match practical requirements in devices by adjusting the geometric parameters.  相似文献   

13.
不良导体导热系数与温度关系研究   总被引:1,自引:0,他引:1  
采用稳态平板法测量不良导体的导热系数时,关键是得到稳态时不良导体的传热速率。根据稳态时传热速率与散热铝盘的散热速率相等,可以测定自然冷却过程中,稳态时散热铝盘温度T2所对应的冷却速率。基于Matlab软件,分析并绘制曲线直观反映出温度、时间、冷却速率三者之间的关系,用拟合法研究了不良导体导热系数随温度变化的关系。  相似文献   

14.
The mesoscopic quartz piezoelectric crystal equivalent circuit is quantized by the method of damped harmonic oscillator quantization. It is shown that, when each branch is in the thermal vacuum states, the quantum fluctuations of the voltage, and current of each loop relate with not only the equivalent circuit inherent parameter, but also the temperature and decay according to exponent along with time.  相似文献   

15.
Using an equation of motion technique, we investigate the spin-polarized transport through a quantum dot coupled to ferromagnetic leads and a mesoseopie ring by the Anderson Hamiltonian. We analyze the transmission probability of this system in both the equilibrium and nonequilibrium cases, and our results reveal that the transport properties show some noticeable characteristics depending upon the spin-polarized strength p, the magnetic flux Ф and the number of lattice sites NR in the mesoseopic ring. These effects might have some potential applications in spintronics.  相似文献   

16.
黄睿  吴绍全  闫从华 《计算物理》2011,28(1):131-137
借助单杂质Anderson模型哈密顿量,及利用格林函数和运动方程等理论,研究旁耦合于介观环和铁磁电极的量子点系统中的极化输运特性.结果表明,通过调节点-环耦合强度、铁磁电极中的极化强度、磁矩相对取向及温度等,均能实现控制体系中自旋极化电流的目的,达到自旋阀效应.为此系统作为一种新的自旋电子材料提供理论依据.  相似文献   

17.
半导体中的输运过程   总被引:1,自引:0,他引:1  
夏建白 《物理》1996,25(7):403-408
半导体的输运性质直接决定了半导体器件的性能,如响应时间、截止频率等,因此与半导体器件发展的同时,人们对半导体的输运性质进行了广泛的实验和理论研究。文章根据半导体物理的发展历史,分体半导体输运、调制掺杂异质结输运、超晶格微带输运、弹道输运以及介质系统输运等几个方面来讨论这一问题。  相似文献   

18.
唐黎明  王玲玲  王宁  严敏 《物理学报》2008,57(5):3203-3211
运用模匹配方法和求解单电子薛定谔方程,来演示非对称T型磁量子结构的电子输运性质.结果表明,结构因子和磁势垒都能改变电子散射模数,电子输运谱因此变得复杂而丰富,散射区域出现了完全局域态和磁边缘态.在特定的结构参数和磁场强度下,能观测到宽谷、尖峰、共振透射和共振反射等电子输运现象,即可以通过调节磁场大小和结构参数来实现波矢过滤. 关键词: 介观体系 电子输运 磁效应  相似文献   

19.
The thermal and electrical transport properties of an ideal anyon gas within fractional exclusion statistics are studied. By solving the Boltzmann equation with the relaxation-time approximation, the analytical expressions for the thermal and electrical conductivities of a three-dimensional ideal anyon gas are given. The low-temperature expressions for the two conductivities are obtained by using the Sommerfeld expansion. It is found that the Wiedemann–Franz law should be modified by the higher-order temperature terms, which depend on the statistical parameter g for a charged anyon gas. Neglecting the higher-order terms of temperature, the Wiedemann–Franz law is respected, which gives the Lorenz number. The Lorenz number is a function of the statistical parameter g.  相似文献   

20.
The mesoscopic nonlinear inductance-capacitance circuit is a typical anharmonie oscillator, due to diodes included in the circuit. In this paper, using the advanced quantum theory of mesoseopie circuits, which based on the fundamental fact that the electric charge takes discrete value, the diode included mesoscopic circuit is firstly studied. Schrodinger equation of the system is a four-order difference equation in p rep asentation. Using the extended perturbative method, the detail energy spectrum and wave functions axe obtained and verified, as an application of the results, the current quantum fluctuation in the ground state is calculated. Diode is a basis component in a circuit, its quantization would popularize the quantum theory of mesoscopie circuits. The methods to solve the high order difference equation are helpful to the application of mesoscopic quantum theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号