首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We present new results for the water dimer equilibrium constant K(p)(T) in the range 190-390 K, using a flexible potential energy surface fitted to spectroscopical data. The increased numerical complexity due to explicit consideration of the monomer vibrations is handled via an adiabatic (6 + 6)d decoupling between intra- and intermolecular modes. The convergence of the canonical partition function of the dimer is ensured by computing all energy levels up to dissociation for total angular momentum values J = 0-5 and using an extrapolation scheme to higher values. The newly calculated values for K(p)(T) are in very good agreement with available experimental data at room temperature. At higher temperatures, an analysis of the convergence of the partition function reveals that quasi-bound states are likely to contribute to the equilibrium constant. Additional thermodynamical quantities (deltaG, deltaH, deltaS, and C(p)) have also been determined and fit to quadratic expressions a + bT + cT2.  相似文献   

2.
Chen W  Li ZR  Wu D  Gu FL  Hao XY  Wang BQ  Li RJ  Sun CC 《The Journal of chemical physics》2004,121(21):10489-10494
This work predicts the extraordinary hyperpolarizability of inorganic clusters: two water trimer anions. The first hyperpolarizabilities of (H2O-)(3) are considerable, beta(0)=1.715 x 10(7) a.u. for configuration A and beta(0)=1.129 x 10(7) a.u. for configuration B at MP2/d-aug-cc-pVDZ+x level. The first hyperpolarizabilities of (H2O-)(3) (configuration A) and related systems [(H2O)(3) and (H2O)(3)F-] are compared at the MP2/d-aug-cc-pVDZ+x level. These results are beta(0)=1.715 x 10(7) a.u. for (H2O-)(3), beta(0)=35 a.u. for (H2O)(3) [the neutral core of (H2O-)(3)], and beta(0)=46 a.u. for (H2O)(3)F-). Comparing the beta(0) values of related systems, we find that the dipole-bound excess electron is the key factor in the extraordinary first hyperpolarizability of (H2O-)(3) species. It will provide a future in the development of some materials with the excess electron (e.g., electrides) that exhibit large nonlinear optical response.  相似文献   

3.
A model for the temperature dependence of the isobaric heat capacity of associated pure liquids C(p,m)(o)(T) is proposed. Taking the ideal gas as a reference state, the residual heat capacity is divided into nonspecific C(p) (res,ns) and associational C(p) (res,ass) contributions. Statistical mechanics is used to obtain C(p)(res,ass) by means of a two-state model. All the experimentally observed C(p,m)(o)(T) types of curves in the literature are qualitatively described from the combination of the ideal gas heat capacity C(p)(id)(T) and C(p)(res,ass)(T). The existence of C(p,m)(o)(T) curves with a maximum is predicted and experimentally observed, for the first time, through the measurement of C(p,m)(o)(T) for highly sterically hindered alcohols. A detailed quantitative analysis of C(p,m)(o)(T) for several series of substances (n-alkanes, linear and branched alcohols, and thiols) is made. All the basic features of C(p,m)(o)(T) at atmospheric and high pressures are successfully described, the model parameters being physically meaningful. In particular, the molecular association energies and the C(p)(res,ns) values from the proposed model are found to be in agreement with those obtained through quantum mechanical ab initio calculations and the Flory model, respectively. It is concluded that C(p,m)(o)(T) is governed by the association energy between molecules, their self-association capability and molecular size.  相似文献   

4.
The specific heat C(p) at constant pressure, the shear viscosity eta(s), and the mutual diffusion coefficient D of the 2,6-dimethylpyridine-water mixture of critical composition have been measured in the homogeneous phase at various temperatures near the lower critical demixing temperature T(c). The amplitude of the fluctuation correlation length xi(0)=(0.198+/-0.004) nm has been derived from a combined evaluation of the eta(s) and D data. This value is in reasonable agreement with the one obtained from the amplitude A(+)=(0.26+/-0.01) J(g K) of the critical term in the specific heat, using the two-scale-factor universality relation. Within the limits of error the relaxation rate Gamma of order parameter fluctuations follows power law with the theoretical universal exponent and with the amplitude Gamma=(25+/-1)x10(9) s(-1). No indications of interferences of the critical fluctuations with other elementary chemical reactions have been found. A noteworthy result is the agreement of the background viscosity eta(b), resulting from the treatment of eta(s) and D data, with the viscosity eta(s)(nu=0) extrapolated from high-frequency viscosity data. The latter have been measured in the frequency range of 5-130 MHz using a novel shear impedance spectrometer.  相似文献   

5.
Turbidity in the one-phase region and the isobaric heat capacity per unit volume in both one-phase and two-phase regions for the critical solutions of {benzonitrile + n-alkane} were measured, from which the values of the system-dependent critical amplitudes for the correlation length, the osmotic compressibility, the heat capacity and the correction-to-scaling term of the heat capacity were deduced. The previously reported data of the coexistence curves for {benzonitrile + n-alkane} were also reanalyzed with the crossover model to obtain the crossover parameters. Subsequently, these results together with the values of the critical amplitude related to the coexistence curve reported previously were used to calculate some universal critical amplitude ratios, which showed reasonable agreement with the theoretical predictions.  相似文献   

6.
The rate coefficient of the gas-phase reaction C(2)H + H(2)O-->products has been experimentally determined over the temperature range 500-825 K using a pulsed laser photolysis-chemiluminescence (PLP-CL) technique. Ethynyl radicals (C(2)H) were generated by pulsed 193 nm photolysis of C(2)H(2) in the presence of H(2)O vapor and buffer gas N(2) at 15 Torr. The relative concentration of C(2)H radicals was monitored as a function of time using a CH* chemiluminescence method. The rate constant determinations for C(2)H + H(2)O were k(1)(550 K) = (2.3 +/- 1.3) x 10(-13) cm(3) s(-1), k(1)(770 K) =(7.2 +/- 1.4) x 10(-13) cm(3) s(-1), and k(1)(825 K) = (7.7 +/- 1.5) x 10(-13) cm(3) s(-1). The error in the only other measurement of this rate constant is also discussed. We have also characterized the reaction theoretically using quantum chemical computations. The relevant portion of the potential energy surface of C(2)H(3)O in its doublet electronic ground state has been investigated using density functional theory B3LYP6-311 + + G(3df,2p) and molecular orbital computations at the unrestricted coupled-cluster level of theory that incorporates all single and double excitations plus perturbative corrections for the triple excitations, along with the 6-311 + + G(3df,2p) basis set [(U)CCSD(T)6-311 + + G(3df,2p)] and using UCCSD(T)6-31G(d,p) optimized geometries. Five isomers, six dissociation products, and sixteen transition structures were characterized. The results confirm that the hydrogen abstraction producing C(2)H(2)+OH is the most facile reaction channel. For this channel, refined computations using (U)CCSD(T)6-311 + + G(3df,2p)(U)CCSD(T)6-311 + + G(d,p) and complete-active-space second-order perturbation theory/complete-active-space self-consistent-field theory (CASPT2/CASSCF) [B. O. Roos, Adv. Chem. Phys. 69, 399 (1987)] using the contracted atomic natural orbitals basis set (ANO-L) [J. Almlof and P. R. Taylor, J. Chem. Phys.86, 4070 (1987)] were performed, yielding zero-point energy-corrected potential energy barriers of 17 kJ mol(-1) and 15 kJ mol(-1), respectively. Transition-state theory rate constant calculations, based on the UCCSD(T) and CASPT2/CASSCF computations that also include H-atom tunneling and a hindered internal rotation, are in perfect agreement with the experimental values. Considering both our experimental and theoretical determinations, the rate constant can best be expressed, in modified Arrhenius form as k(1)(T) = (2.2 +/- 0.1) x 10(-21)T(3.05) exp[-(376 +/- 100)T] cm(3) s(-1) for the range 300-2000 K. Thus, at temperatures above 1500 K, reaction of C(2)H with H(2)O is predicted to be one of the dominant C(2)H reactions in hydrocarbon combustion.  相似文献   

7.
8.
The values of the molar standard enthalpies of formation, Delta(f)H(o)(m)(C(76), cr) = (2705.6 +/- 37.7) kJ x mol(-1), Delta(f)H(o)(m)(C(78), cr) = (2766.5 +/- 36.7) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), cr) = (2826.6 +/- 42.6) kJ x mol(-1), were determined from the energies of combustion, measured by microcombustion calorimetry on a high-purity sample of the D(2) isomer of fullerene C(76), as well as on a mixture of the two most abundant constitutional isomers of C(78) (C(2nu)-C(78) and D(3)-C(78)) and C(84) (D(2)-C(84), and D(2d)-C(84). These values, combined with the published data on the enthalpies of sublimation of each cluster, lead to the gas-phase enthalpies of formation, Delta(f)H(o)(m)(C(76), g) = (2911.6 +/- 37.9) kJ x mol(-1); Delta(f)H(o)(m)(C(78), g) = (2979.3 +/- 37.2) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), (g)) = (3051.6 +/- 43.0) kJ x mol(-1), results that were found to compare well with those reported from density functional theory calculations. Values of enthalpies of atomization, strain energies, and the average C-C bond energy were also derived for each fullerene. A decreasing trend in the gas-phase enthalpy of formation and strain energy per carbon atom as the size of the cluster increases is found. This is the first experimental evidence that these fullerenes become more stable as they become larger. The derived experimental average C-C bond energy E(C-C) = 461.04 kJ x mol(-1) for fullerenes is close to the average bond energy E(C-C) = 462.8 kJ x mol(-1) for polycyclic aromatic hydrocarbons (PAHs).  相似文献   

9.
The critical micelle concentration (c.m.c.) for four cationic surfactants, alkyl-trimethyl-ammonium bromides, was determined as a function of temperature by conductivity measurements. The values of the standard free energy of micellisation DeltaG degrees(mic) at different temperatures were calculated by using a pseudo-phase transition model. Then, from the diagram (-DeltaG degrees(mic)/T)=f(1/T), the thermodynamic functions DeltaH(app) and DeltaS(app) were calculated. From the plots DeltaH(app)=f(T) and DeltaS(app) = f(ln T) the slopes DeltaC(p) = n(w(H))C(p,w) and DeltaC(p)=n(w(S))C(p,w) were calculated, with the numbers n(w(H)) and n(w(S)) negative and equal and therefore defined simply as n(w). The number n(w)<0, indicating condensed water molecules, depends on the reduction of cavity that takes place as a consequence of the coalescence of the cavities previously surrounding the separate aliphatic or aromatic moieties. The analysis, based on a molecular model consisting of three forms of water, namely W(I), W(II), and W(III), respectively, was extended to several other types of surfactants for which c.m.c. data had been published by other authors. The results of this analysis form a coherent scheme consistent with the proposed molecular model. The enthalpy for all the types of surfactant is described by DeltaH(app)= -3.6 + 23.1xi(w)-xi(w)C(p,w)T and the entropy by DeltaS(app)= +10.2+428xi(w)-xi(w)C(p,w) ln T where xi(w)= |n(w)| represents the number of molecules W(III) involved in the reaction. The term Deltah(w)= +23.1 kJ mol(-1) xi(w)(-1) indicates an unfavourable endothermic contribution to enthalpy for reduction of the cavity whereas the term Deltas(w)= +428 J K(-1) mol(-1) xi(w)(-1) represents a positive entropy contribution for reduction of the cavity, what is the driving force of hydrophobic association. The processes of non polar gas dissolution in water and of micelle formation were found to be strictly related: they are, however, exactly the opposite of one another. In micelle formation no intermolecular electronic short bond is formed. We propose, therefore, to substitute the term "hydrophobic bond" with that of "hydrophobic association".  相似文献   

10.
Reported here is the first μSR study of the muon (A(μ)) and proton (A(p)) β-hyperfine coupling constants (Hfcc) of muoniated sec-butyl radicals, formed by muonium (Mu) addition to 1-butene and to cis- and trans-2-butene. The data are compared with in vacuo spin-unrestricted MP2 and hybrid DFT/B3YLP calculations reported in the previous paper (I), which played an important part in the interpretation of the data. The T-dependences of both the (reduced) muon, A(μ)′(T), and proton, A(p)(T), Hfcc are surprisingly well explained by a simple model, in which the calculated Hfcc from paper I at energy minima of 0 and near ±120° are thermally averaged, assuming an energy dependence given by a basic 2-fold torsional potential. Fitted torsional barriers to A(μ)′(T) from this model are similar (~3 kJ/mol) for all muoniated butyl radicals, suggesting that these are dominated by ZPE effects arising from the C?Mu bond, but for A(p)(T) exhibit wide variations depending on environment. For the cis- and trans-2-butyl radicals formed from 2-butene, A(μ)′(T) exhibits clear discontinuities at bulk butene melting points, evidence for molecular interactions enhancing these muon Hfcc in the environment of the solid state, similar to that found in earlier reports for muoniated tert-butyl. In contrast, for Mu?sec-butyl formed from 1-butene, there is no such discontinuity. The muon hfcc for the trans-2-butyl radical are seemingly very well predicted by B3LYP calculations in the solid phase, but for sec-butyl from 1-butene, showing the absence of further interactions, much better agreement is found with the MP2 calculations across the whole temperature range. Examples of large proton Hfcc near 0 K are also reported, due to eclipsed C?H bonds, in like manner to C?Mu, which then also exhibit clear discontinuities in A(p)(T) at bulk melting points. The data suggest that the good agreement found between theory and experiment from the B3LYP calculations for eclipsed bonds in the solid phase may be fortuitous. For the staggered protons of the sec-butyl radicals formed, no discontinuities are seen at all in A(p)(T), also demonstrating no further effects of molecular interactions on these particular proton Hfcc.  相似文献   

11.
Direct ab initio dynamic calculations are performed on the reactions of atomic hydrogen with GeD(n)(CH(3))(4-n) (n = 1-4) over the temperature range 200-2000 K at the PMP4SDTQ/6-311 +G(3df,2p)//MP2/6-31 +G(d) (for n = 2-4) and G2//MP2/6-31 +G(d) (for n = 1) levels. The corresponding k(H)/k(D) ratios are then calculated in order to determine the kinetic isotope effect for the four reactions. For the simplest GeD(4) +H reaction, the only one that has available experimental data, the calculated canonical variational transition state theory incorporates small-curvature tunneling correction (CVT/SCT) thermal rate constants, and the k(H)/k(D) values are in good agreement with the experimental values within the experimental temperature range 293-550 K. For the four GeD(n)(CH(3))(4-4) (n = 1-4) reactions, the variational effect is small over the whole temperature range, whereas the small-curvature effect is important in the lower temperature range. Finally, the overall rate constants are fitted to the three-parameter expression over the whole temperature range 200-2000 K as 5.8 x 10(8)T(1.68)exp(-929/T), 1.7 x 10(8)T(1.80)exp(-691/T), 2.58 x 10(8)T(1.71)exp(-706/T), and 1.0 x 10(7)T(2.08)exp(-544/T) cm(3) mol(-1) s(-1) for the n = 4, 3, 2, and 1 reactions. Our work may represent the first theoretical study of the kinetic isotope effect for the H-attack on the G-H bonding.  相似文献   

12.
Using the equal volume criterion and also the pseudospinodal conception the critical demixing point of the triethylene glycol monoheptyl ether/water system (C7E3H2O) has been determined as Ycrit=0.1 and Tcrit=296.46 K (Y, mass fraction of surfactant). From density measurements the critical micelle concentration (cmc) followed as Ycmc=0.007 at 288.15 K and Ycmc=0.0066 at 298.15 K. The (static) shear viscosity etas and the mutual diffusion coefficient D of the C7E3H2O mixture of critical composition have been evaluated to yield their singular and background parts. From a combined treatment of both quantities the relaxation rate Gamma of order parameter fluctuations has been derived. Gamma follows power law with universal critical exponent and amplitude Gamma0=3.1 x 10(9) s(-1). Broadband ultrasonic spectra of C7E3H2O mixtures exhibit a noncritical relaxation, reflecting the monomer exchange between micelles and the suspending phase, and a critical term due to concentration fluctuations. The former is subject to a relaxation time distribution that broadens when approaching the critical temperature. The latter can be well represented with the aid of the dynamic scaling model by Bhattacharjee and Ferrell (BF) [Phys. Rev. A. 31, 1788 (1985)]. The half-attenuation frequency in the scaling function of the latter model is noticeably smaller (Omega12 (BF) approximately 1) than the theoretically predicted value Omega12 (BF)=2.1. This result has been taken as an indication of a coupling between the fluctuations in the local concentration and the kinetics of micelle formation, in correspondence with the idea of a fluctuation controlled monomer exchange [T. Telgmann and U. Kaatze, Langmuir 18, 3068 (2002)].  相似文献   

13.
The iron mixed-valence complex (n-C(3)H(7))(4)N[Fe(II)Fe(III)(dto)(3)] exhibits a novel type of phase transition called charge-transfer phase transition (CTPT), where the thermally induced electron transfer between Fe(II) and Fe(III) occurs reversibly at ~120 K, in addition to the ferromagnetic phase transition at T(C) = 7 K. To investigate the mechanism of the CTPT, we have synthesized a series of magnetically diluted complexes (n-C(3)H(7))(4)N[Fe(II)(1-x)Zn(II)(x)Fe(III)(dto)(3)] (dto = C(2)O(2)S(2); x = 0-1), and carried out magnetic susceptibility and dielectric constant measurements and (57)Fe M?ssbauer spectroscopy. With increasing Zn(II) concentration (x), the CTPT is gradually suppressed and disappears at x ≈ 0.13. On the other hand, the ferromagnetic transition temperature (T(C)) is initially enhanced from 7 K to 12 K between x = 0.00 and 0.05, despite the nonmagnetic nature of Zn(II) ions, and then it decreases monotonically from 12 K to 3 K with increasing Zn(II) concentration. This anomalous dependence of T(C) on Zn(II) concentration is related to a change in the spin configuration of the ferromagnetic state caused by the partial suppression of the CTPT.  相似文献   

14.
In the present work we examine a series of hypervalent molecules, namely, FClO(x) (x = 1-3), Cl(3)PO, Cl(3)PCH(2), Cl(3)CClO, and C(ClO)(4), through single-reference [CCSD(T)] and multireference (MRCI) ab initio methods, the principal aim being the deciphering of their binding pattern. Our electronic structure calculations consistently show that the bonding occurs through an electron pair transfer from the Cl or P atoms of the molecules considered to the (1)D state of the O atom(s). We strongly believe that the term "hypervalency" when viewed from an unbiased side and with a critical eye reveals a simple chemical bonding situation that is in conformity with a scientific parsimony that dissolves the mythology of an enormous class of molecular systems that are categorized under the term hypervalent.  相似文献   

15.
The concept of aromaticity was first invented to account for the unusual stability of planar organic molecules with 4n + 2 delocalized pi electrons. Recent photoelectron spectroscopy experiments on all-metal MAl(4)(-) systems with an approximate square planar Al(4)(2-) unit and an alkali metal led to the suggestion that Al(4)(2-) is aromatic. The square Al(4)(2-) structure was recognized as the prototype of a new family of aromatic molecules. High-level ab initio calculations based on extrapolating CCSD(T)/aug-cc-pVxZ (x = D, T, and Q) to the complete basis set limit were used to calculate the first electron affinities of Al(n)(), n = 0-4. The calculated electron affinities, 0.41 eV (n = 0), 1.51 eV (n = 1), 1.89 eV (n = 3), and 2.18 eV (n = 4), are all in excellent agreement with available experimental data. On the basis of the high-level ab initio quantum chemical calculations, we can estimate the resonance energy and show that it is quite large, large enough to stabilize Al(4)(2-) with respect to Al(4). Analysis of the calculated results shows that the aromaticity of Al(4)(2-) is unusual and different from that of C(6)H(6). Particularly, compared to the usual (1-fold) pi aromaticity in C(6)H(6), which may be represented by two Kekulé structures sharing a common sigma bond framework, the square Al(4)(2-) structure has an unusual "multiple-fold" aromaticity determined by three independent delocalized (pi and sigma) bonding systems, each of which satisfies the 4n + 2 electron counting rule, leading to a total of 4 x 4 x 4 = 64 potential resonating Kekulé-like structures without a common sigma frame. We also discuss the 2-fold aromaticity (pi plus sigma) of the Al(3)(-) anion, which can be represented by 3 x 3 = 9 potential resonating Kekulé-like structures, each with two localized chemical bonds. These results lead us to suggest a general approach (applicable to both organic and inorganic molecules) for examining delocalized chemical bonding. The possible electronic contribution to the aromaticity of a molecule should not be limited to only one particular delocalized bonding system satisfying a certain electron counting rule of aromaticity. More than one independent delocalized bonding system can simultaneously satisfy the electron counting rule of aromaticity, and therefore, a molecular structure could have multiple-fold aromaticity.  相似文献   

16.
The predictions from a recently reported (J. Chem. Phys. 2004, 120, 6648) two-state association model (TSAM) have been tested against experimental data. The temperature, T, and pressure, p, dependence of the isobaric heat capacity, C(p), for three pure alcohols and the temperature dependence at atmospheric pressure of the excess heat capacity, C(p)(E), for four alcohol + ester mixtures have been measured. The branched alcohols were 3-pentanol, 3-methyl-3-pentanol, and 3-ethyl-3-pentanol, and the mixtures were 1-butanol and 3-methyl-3-pentanol mixed with propyl acetate and with butyl formate. These data, together with literature data for alcohol + n-alkane and alcohol + toluene mixtures, have been analyzed using the TSAM. The model, originally formulated for the C(p) of pure liquids, has been extended here to account for the C(p)(E) of mixtures. To evaluate its performance, quantum mechanical ab initio calculations for the H-bond energy, which is one of the model parameters, were performed. The effect of pressure on C(p) for pure liquids was elucidated, and the variety of C(p)(E)(T) behaviors was rationalized. Furthermore, from the C(p) data at various pressures, the behavior of the volume temperature derivative, (deltaV/deltaT)(p), was inferred, with the existence of a (deltaV/deltaT)(p) versus T maximum for pure associated liquids such as the branched alcohols being predicted. It is concluded that the TSAM captures the essential elements determining the behavior of the heat capacity for pure liquids and mixtures, providing insight into the macroscopic manifestation of the association phenomena occurring at the molecular level.  相似文献   

17.
18.
The thermal decomposition of the 2-chloroallyl radical, CH(2)CClCH(2) --> CH(2)CCH(2) + Cl (1), was studied using the laser photolysis/photoionization mass spectrometry technique. Rate constants were determined in time-resolved experiments as a function of temperature (720-840 K) and bath gas density ([He] = (3-12) x 10(16), [N(2)] = 6 x 10(16) molecule cm(-3)). C(3)H(4) was observed as a primary product of reaction 1. The rate constants of reaction 1 are in the falloff, close to the low-pressure limit, under the conditions of the experiments. The potential energy surface (PES) of reaction 1 was studied using a variety of quantum chemical methods. The results of the study indicate that the minimum energy path of the CH(2)CClCH(2) dissociation proceeds through a PES plateau corresponding to a weakly bound Cl-C(3)H(4) complex; a PES saddle point exists between the equilibrium CH(2)CClCH(2) structure and the Cl-C(3)H(4) complex. The results of quantum chemical calculations, the rate constant values obtained in the experimental study, and literature data on the reverse reaction of addition of Cl to allene were used to create a model of reactions 1 and -1. The experimental dependences of the rate constants on temperature and pressure were reproduced in RRKM/master equation calculations. The reaction model provides expressions for the temperature dependences of the high-pressure-limit and the low-pressure-limit rate constants and the falloff broadening factors (at T = 300-1600 K): k(infinity)(1) = 1.45 x 10(20)T(-1.75) exp(-19609 K/T) s(-1), k(infinity)(-)(1) = 8.94 x 10(-10)T(-0.40) exp(481 K/T) cm(3) molecule(-1) s(-1), k(1)(0)(He) = 5.01 x 10(-32)T(-12.02) exp(-22788 K/T) cm(3) molecule(-1) s(-1), k(1)(0)(N(2)) = 2.50 x 10(-32)T(-11.92) exp(-22756 K/T) cm(3) molecule(-1) s(-1), F(cent)(He) = 0.46 exp(-T/1001 K) + 0.54 exp(-T/996 K) + exp(-4008 K/T), and F(cent)(N(2)) = 0.37 exp(-T/2017 K) + 0.63 exp(-T/142 K) + exp(-4812 K/T). The experimental data are not sufficient to specify all the parameters of the model; consequently, some of the model parameters were obtained from quantum chemical calculations and from analogy with other reactions of radical decomposition. Thus, the parametrization is most reliable under conditions close to those used in the experiments.  相似文献   

19.
The rates of self-exchange electron transfer in the trimethylphosphine complex of cytochrome c have been measured by an NMR technique over a large range of ionic strengths. The rate constant is 1.56 x 10(4) M(-)(1) s(-)(1) at 23 degrees C (&mgr; = 0.34 M) at pH 6.9. Dependence on ionic strength of the rate constant is treated by van Leeuwen theory. Extrapolation of the rate constant to infinite ionic strength gives a rate constant of 3.9 x 10(5) M(-)(1) s(-)(1). This rate constant is compared with others reported for myoglobin and cytochrome b(5)(). The values for these systems range over 2 orders of magnitude with myoglobin-PMe(3) < cytochrome b(5)() < cytochrome c-PMe(3) < cytochrome c. Analysis of the data in terms of Marcus theory gives a reorganization energy, lambda, for self-exchange of 0.75 eV mol(-)(1) for cytochrome c-PMe(3). Substitution of Met-80 by PMe(3) appears to influence only weakly the rearrangement barrier to electron transfer.  相似文献   

20.
Using the interferometric method of Scheludko-Exerowa for investigation of foam films, we have obtained results using a hydrophobically modified inulin polymeric surfactant (INUTEC SP1). Measurements were carried out at constant INUTEC SP1 concentration of 2 x 10(-)(5) mol.dm(-)(3) and at various NaCl concentrations (in the range 1 x 10(-)(4) to 2 mol.dm(-)(3)). At constant capillary pressure of 50 Pa, the film thickness decreased gradually with an increase in NaCl concentration up to 10(-)(2) mol.dm(-)(3) NaCl above which the film thickness remains virtually constant at about 16 nm. This reduction in film thickness with an increase in NaCl concentration is due to the compression of the double layer and at the critical electrolyte concentration (C(el,cr) = 10(-)(2) mol.dm(-)(3)) the electrostatic component of the disjoining pressure is completely screened and the remaining pressure is due to the steric interaction between the adsorbed polymer layers. Disjoining pressure-thickness (Pi-h) isotherms were obtained at C(el) < C(el,cr) (10(-)(4) - 10(-)(3) mol.dm(-)(3)) and C(el) > C(el,cr) (0.5, 1, and 2 mol.dm(-)(3)). In the first case, the disjoining pressure isotherms could be fitted using the classical DLVO theory, Pi = Pi(el) + Pi(vw), and using the constant charge model. At C(el) > C(el,cr), the main repulsion is due to the steric interaction between the polyfructose loops that exist at the air-water interface, i.e., Pi = Pi(st) + Pi(vw). Under these conditions, there is a sharp transition from DLVO to non-DLVO forces. In the latter case, the interaction could be described using the de Gennes' scaling theory. This gave an adsorbed layer thickness of 6.5 nm which is in reasonable agreement with the values obtained at the solid-solution interface. The Pi-h isotherms showed that these foam films are not very stable and they tend to collapse above a critical capillary pressure (of about 1 x 10(3) Pa), and these results could be used to predict the foam stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号