首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In continuation of our recent studies on the quality of conformational models generated with CATALYST and OMEGA we present a large-scale survey focusing on the impact of conformational model quality and several screening parameters on pharmacophore-based and shape-based virtual high throughput screening (vHTS). Therefore, we collected known active compounds of CDK2, p38 MAPK, PPAR-gamma, and factor Xa and built a set of druglike decoys using ilib:diverse. Subsequently, we generated 3D structures using CORINA and also calculated conformational models for all compounds using CAESAR, CATALYST FAST, and OMEGA. A widespread set of 103 structure-based pharmacophore models was developed with LigandScout for virtual screening with CATALYST. The performance of both database search modes (FAST and BEST flexible database search) as well as the fit value calculation procedures (FAST and BEST fit) available in CATALYST were analyzed in terms of their ability to discriminate between active and inactive compounds and in terms of efficiency. Moreover, these results are put in direct comparison to the performance of the shape-based virtual screening platform ROCS. Our results prove that high enrichment rates are not necessarily in conflict with efficient vHTS settings: In most of the experiments, we obtained the highest yield of actives in the hit list when parameter sets for the fastest search algorithm were used.  相似文献   

4.
The combination of 3D pharmacophore fingerprints and the support vector machine classification algorithm has been used to generate robust models that are able to classify compounds as active or inactive in a number of G-protein-coupled receptor assays. The models have been tested against progressively more challenging validation sets where steps are taken to ensure that compounds in the validation set are chemically and structurally distinct from the training set. In the most challenging example, we simulate a lead-hopping experiment by excluding an entire class of compounds (defined by a core substructure) from the training set. The left-out active compounds comprised approximately 40% of the actives. The model trained on the remaining compounds is able to recall 75% of the actives from the "new" lead series while correctly classifying >99% of the 5000 inactives included in the validation set.  相似文献   

5.
6.
In recent years, many virtual screening (VS) tools have been developed that employ different molecular representations and have different speed and accuracy characteristics. In this paper, we compare ten popular ligand-based VS tools using the publicly available Directory of Useful Decoys (DUD) data set comprising over 100?000 compounds distributed across 40 protein targets. The DUD was developed initially to evaluate docking algorithms, but our results from an operational correlation analysis show that it is also well suited for comparing ligand-based VS tools. Although it is conventional wisdom that 3D molecular shape is an important determinant of biological activity, our results based on permutational significance tests of several commonly used VS metrics show that the 2D fingerprint-based methods generally give better VS performance than the 3D shape-based approaches for surprisingly many of the DUD targets. To help understand this finding, we have analyzed the nature of the scoring functions used and the composition of the DUD data set itself. We propose that to improve the VS performance of current 3D methods, it will be necessary to devise screening queries that can represent multiple possible conformations and which can exploit knowledge of known actives that span multiple scaffold families.  相似文献   

7.
8.
A new method for the postprocessing of docking outputs has been developed, based on encoding putative 3D binding modes (docking solutions) as ligand-protein interactions into simple bit strings, a method analogous to the structural interaction fingerprint. Instead of employing traditional scoring functions, the method uses a series of new, knowledge-based scores derived from the similarity of the bit strings for each docking solution to that of a known reference binding mode. A GOLD docking study was carried out using the Bissantz estrogen receptor antagonist set along with the new scoring method. Superior recovery rates, with up to 2-fold enrichments, were observed when the new knowledge-based scoring was compared to the GOLD fitness score. In addition, top ranking sets of molecules (actives and potential actives or decoys) were structurally diverse with low molecular weights and structural complexities. Principal component analysis and clustering of the fingerprints permits the easy separation of active from inactive binding modes and the visualization of diverse binding modes.  相似文献   

9.
10.
11.
12.
《结构化学》2021,40(8)
A 3D-QSAR study was conducted to analyze the anti-excitatory activity(p E) of benzodiazepinooxazole derivatives to mice by the comparative molecular field analysis(CoMFA) method. Among the 54 active molecules, a training set of 46 compounds was randomly selected to construct the CoMFA model; the remaining compounds, together with template molecule(No. 54) and two newly designed molecules constitute a test set of 17 compounds to validate the model. The obtained cross-validation coefficient(R_(cv)~2), the non-cross validation coefficient(R~2), and the test value F of the CoMFA model for training set are 0.516, 0.899, and 57.57,respectively. The model was used to predict the activities of all compounds in the training and testing sets, and the results indicated that the model had good correlation, strong stability and good predictability. Based on the 3D contour maps, eight novel benzodiazepinooxazole derivatives with higher anti-excitatory activity were designed.However, the effectiveness of these novel benzodiazepinooxazole derivatives is still needed to be verified by the experimental results.  相似文献   

13.
Similarity-based methods for virtual screening are widely used. However, conventional searching using 2D chemical fingerprints or 2D graphs may retrieve only compounds which are structurally very similar to the original target molecule. Of particular current interest then is scaffold hopping, that is, the ability to identify molecules that belong to different chemical series but which could form the same interactions with a receptor. Reduced graphs provide summary representations of chemical structures and, therefore, offer the potential to retrieve compounds that are similar in terms of their gross features rather than at the atom-bond level. Using only a fingerprint representation of such graphs, we have previously shown that actives retrieved were more diverse than those found using Daylight fingerprints. Maximum common substructures give an intuitively reasonable view of the similarity between two molecules. However, their calculation using graph-matching techniques is too time-consuming for use in practical similarity searching in larger data sets. In this work, we exploit the low cardinality of the reduced graph in graph-based similarity searching. We reinterpret the reduced graph as a fully connected graph using the bond-distance information of the original graph. We describe searches, using both the maximum common induced subgraph and maximum common edge subgraph formulations, on the fully connected reduced graphs and compare the results with those obtained using both conventional chemical and reduced graph fingerprints. We show that graph matching using fully connected reduced graphs is an effective retrieval method and that the actives retrieved are likely to be topologically different from those retrieved using conventional 2D methods.  相似文献   

14.
The number of compounds available for evaluation as part of the drug discovery process continues to increase. These compounds may exist physically or be stored electronically allowing screening by either actual or virtual means. This growing number of compounds has generated an increasing need for effective strategies to direct screening efforts. Initial efforts toward this goal led to the development of methods to select diverse sets of compounds for screening, methods to cluster actives into related groups of compounds, and tools to select compounds similar to actives of interest for further screening. In this work we extend these earlier efforts to exploit information about inactive compounds to help make rational decisions about which sets of compounds to include as part of a continuing screening campaign, or as part of a focused follow-up effort. This method uses the information from inactive compounds to "shave" off or deprioritize compounds similar to inactives from further consideration. This methodology can be used in two ways: first, to provide a rational means of deciding when sufficient compounds containing certain structural features have been tested and second as a tool to enhance similarity searching around known actives. Similarity searching is improved by deprioritizing compounds predicted to be inactive, due to the presence of structural features associated with inactivity.  相似文献   

15.
16.
17.
18.
19.
The binding of a small molecule to a protein is inherently a 3D matching problem. As crystal structures are not available for most drug targets, there is a need to be able to infer from bioassay data the key binding features of small molecules and their disposition in space, the pharmacophore. Fingerprints of 3D features and a modification of Gibbs sampling to align a set of known flexible ligands, where all compounds are active, are used to discern possible pharmacophores. A clique detection method is used to map the features back onto the binding conformations. The complete algorithm is described in detail, and it is shown that the method can find common superimposition for several test data sets. The method reproduces answers very close to the crystal structure and literature pharmacophores in the examples presented. The basic algorithm is relatively fast and can easily deal with up to 100 compounds and tens of thousands of conformations. The algorithm is also able to handle multiple binding mode problems, which means it can superimpose molecules within the same data set according to two different sets of binding features. We demonstrate the successful use of this algorithm for multiple binding modes for a set of D2 and D4 ligands.  相似文献   

20.
This article describes a multiparameter calibration model, which improves the accuracy of density functional theory (DFT) for the prediction of standard enthalpies of formation for a large set of organic compounds. The model applies atom based, bond based, electronic, and radical environmental correction terms to calibrate the calculated enthalpies of formation at B3LYP/6‐31G(d,p) level by a least‐square method. A diverse data set of 771 closed‐shell compounds and radicals is used to train the model. The leave‐one‐out cross validation squared correlation coefficient q2 of 0.84 and squared correlation coefficient r2 of 0.86 for the final model are obtained. The meanabsolute error in enthalpies of formation for the dataset is reduced from 4.9 kcal/mol before calibration to 2.1 kcal/mol after calibration. Five‐fold cross validation is also used to estimate the performance of the calibration model and similar results are obtained. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号