首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HOOO radical plays a crucial role in atmospheric processes involving the OH radical and O(2) molecule. We present an ab initio molecular orbital theory study on the decomposition reaction of the first excited state HOOO((2)A') with respect to OH and O(2). The geometries and harmonic vibrational frequencies of all stationary points are calculated at the CASSCF and MRCI levels of theory in conjunction with the 6-31+G(d,p) basis set. The potential energy profile of the decomposition reaction is studied at the CASSCF/6-31+G(d,p) level of theory, in which the complete valence orbitals and electrons are included in the active space. The energies of the potential energy profile are further refined at the CASPT2 and MRCI levels of the theory. Additionally, we have determined the interesting reaction process: the HOOO((2)A') radical with C(s) symmetry does not dissociate to OH((2)Pi) and O(2)((3)Sigma(-)(g)) directly as this is forbidden by orbital symmetry, but dissociates to OH((2)Pi) and O(2)((3)Sigma(-)(g)) via the change in symmetry from C(s) to C(infinity v) symmetry with a low barrier.  相似文献   

2.
The energy thresholds to isomerization of the three conformational isomers of m-divinylbenzene (cis-cis, cis-trans, and trans-trans) were directly measured by stimulated emission pumping-population transfer (SEP-PT) spectroscopy. The experimentally determined isomerization thresholds are Ethresh(cc --> ct, tt) = 1080-1232 cm(-1), Ethresh(tt --> ct, cc) = 1130-1175 cm(-1), Ethresh(ct --> cc) = 997-1175 cm(-1), and Ethresh(ct --> tt) = 997-1232 cm(-1). On the basis of the threshold values for X --> Y and Y --> X isomerization, the relative energies of the conformational isomers are -102 < or = E(ct) < or = +178 cm(-1) and -102 < or = E(cc) < or = +95 cm(-1) relative to E(tt) = 0. UV-hole-filling (UVHF) spectroscopy was also used to determine the effect of population returning to the ground state via fluorescence. A full set of governing equations for SEP-PT and UVHF spectroscopy is reported that will be generally useful for future studies using these methods. By comparison of these results with the computed stationary points on a calculated surface (DFT B3LYP/6-31+G*), the isomerization pathway was determined to involve sequential isomerization of each vinyl group rather than concerted motion. The energy thresholds were also combined with the ground state torsional vibrational energy levels to obtain a new fitted two-dimensional torsional potential for mDVB.  相似文献   

3.
The laser induced fluorescence excitation and single vibronic excitation dispersed fluorescence spectra have been studied for supersonic jet cooled 1-methyl-2(1h)-pyridone. The methyl torsional bands and some low frequency vibrational transitions were assigned for both ground and excited states. The torsional parameters V(3)=244 cm(-1) and V(6)=15 cm(-1) for the ground state and V(3)=164 cm(-1) and V(6)=40 cm(-1) for the excited state were obtained. To get the insight into the methyl torsional barrier, ab initio calculations were performed and compared with the experimental results. Origin of potential barrier was traced by partitioning the barrier energy into changes in bond-antibond interaction, structural, and steric energies accompanying methyl rotation using natural bond orbital analysis. The role of local interactions in ascertaining the barrier potential reveals that its nature cannot be understood without considering the molecular flexing. The hyperconjugation between CHsigma(*) and ring pi(*) observed in lowest unoccupied molecular orbital (LUMO) stabilizes the methyl group conformer that undergoes a 60 degrees rotation in the excited state with respect to that of the ground state, and it is the change in LUMO that plays important role in the excited state barrier formation.  相似文献   

4.
Infrared action spectroscopy and dissociation dynamics of the HOOO radical   总被引:1,自引:0,他引:1  
The HOOO radical has long been postulated to be an important intermediate in atmospherically relevant reactions and was recently deemed a significant sink for OH radicals in the tropopause region. In the present experiments, HOOO radicals are generated in a pulsed supersonic expansion by the association of O(2) and photolytically generated OH radicals, and the spectral signature and vibrational predissociation dynamics are investigated via IR action spectroscopy, an IR-UV double resonance technique. Rotationally resolved IR action spectra are obtained for trans-HOOO in the fundamental (nu(OH)) and overtone (2nu(OH)) OH stretching regions at 3569.30 and 6974.18 cm(-1), respectively. The IR spectra exhibit homogeneous line broadening, characteristic of a approximately 26-ps lifetime, which is attributed to intramolecular vibrational redistribution and/or predissociation to OH and O2 products. In addition, an unstructured feature is observed in both the OH fundamental and overtone regions of HOOO, which is likely due to cis-HOOO. The nascent OH X(2)Pi, v = 0 or v = 1, products following vibrational predissociation of HOOO, nu(OH) or 2nu(OH), respectively, have been investigated using saturated laser-induced fluorescence measurements. A distinct preference for population of Pi(A') Lambda-doublets in OH was observed and is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained.  相似文献   

5.
Hydrogen trioxide (HOOO) radical and other polyoxides of general formula, ROnR (where R stands for hydrogen, other atoms or groups and n?≥?3), are believed to be key intermediates in atmospheric chemistry and biological oxidation reactions. In this contribution, DFT calculations using M06-2X density functional and the 6-31G(d,p) and 6-311+G(d,p) basis sets have been carried out to study different reactions of HOOO radical with guanine such as addition of HOOO radical at the C2, C4, C5, and C8 sites of guanine, abstraction of hydrogen atoms (H1, H2a, and H8) of guanine, and the mechanisms of oxidation of guanine with HOOO radical yielding 8-oxoguanine(a highly mutagenic derivative of guanine) and its radical in gas phase and aqueous media. The polarizable continuum model (PCM) has been used for solvation calculations in aqueous media. Our calculations reveal that the C8 site of guanine is the most reactive site for addition of HOOO radical, and adduct formed at this site would be appreciably stable. The rate constant (\( =\frac{K_bT}{h}{e}^{-\frac{\Delta {E}^b}{RT}} \)) at the C8 site is found to be 6.07?×?107 (2.89?×?107) s?1 at the M06-2X/6-311+G(d,p) level of theory in gas phase (aqueous media). The calculated barrier energy and heat of formation of hydrogen abstraction reactions show that HOOO radical would not abstract hydrogen atoms of guanine. Oxidation of guanine with HOOO radical can occur following two schemes (Scheme 1 and Scheme 2). It is found that formation of 8-oxoguanine radical via Scheme 1 would predominate over formation of 8-oxoguanine via Scheme 2, in a reaction of HOOO radical and guanine. Thus, HOOO radical can be treated as a member of reactive oxygen species (ROS) which play key roles in biological oxidation reactions, in agreement with previous literature reports.  相似文献   

6.
The DOOO radical has been produced by three-body association between OD and O2 in a supersonic free-jet expansion and investigated using action spectroscopy, an IR-UV double-resonance technique. Partially rotationally structured bands observed at 2635.06 and 5182.42 cm(-1) are assigned to the OD stretch fundamental (nu(OD)) and overtone (2nu(OD)), respectively, of the trans-DOOO radical. Unstructured bands observed in both spectral regions are assigned to cis-DOOO. Nascent OD X(2)Pi product state distributions following vibrational predissociation appear to be nearly statistical with respect to the degree of rotational excitation, but display a marked propensity for Pi(A') Lambda-doublets, which is interpreted as a signature of a planar dissociation. The energetically highest open OD X(2)Pi product channel implies an upper limit dissociation energy D0 < or = 1856 cm(-1) or 5.31 kcal mol(-1). This value allows refinement of the upper limit D0 of the atmospherically important HOOO isotopomer, suggesting that it is marginally less stable than previously thought.  相似文献   

7.
Intrinsic reaction coordinate (IRC) torsional potentials were calculated for N(2)O(4) and N(2)O(3) based on optimized B3LYP/aug-cc-pVDZ geometries of the respective 90 degrees -twisted saddle points. These potentials were refined by obtaining CCSD(T)aug-cc-pVXZ energies [in the complete basis set (CBS) limit] of points along the IRC. A comparison is made between these ab initio potentials and an analytical form based on a two-term cosine expansion in terms of the N-N dihedral angle. The shapes of these two potential curves are in close agreement. The torsional barriers in N(2)O(4) and N(2)O(3) obtained from the CCSD(T)/CBS//B3LYP/aug-cc-pVDZ calculations are 2333 and 1704 cm(-1), respectively. For N(2)O(4) the torsion fundamental frequency from the IRC potential is 87.06 cm(-1), which is in good agreement with the experimentally reported value of 81.73 cm(-1). However, in the case of N(2)O(3) the torsional frequency found from the IRC potential, 144 cm(-1), is considerably larger than the reported experimental values 63-76 cm(-1). Consistent with this discrepancy, the torsional barrier obtained from several different calculations, 1417-1718 cm(-1), is higher than the value of 350 cm(-1) deduced from experimental studies. It is suggested that the assignment of the torsional mode in N(2)O(3) should be reexamined. N(2)O(4) and N(2)O(3) exhibit strong hyperconjugative interactions of in-plane O lone pairs with the central N-N sigma* antibond. Hyperconjugative stabilization is somewhat stronger at the planar geometries because 1,4 interactions of lone pairs on cis O atoms promote delocalization of electrons into the N-N antibond. Calculations therefore suggest that the torsional barriers in these molecules arise principally from a combination of 1,4 interactions and hyperconjugation.  相似文献   

8.
Rotationally resolved electronic spectra of several low frequency vibrational bands that appear in the S(1) ← S(0) transition of 4-fluorobenzyl alcohol (4FBA) in the collision-free environment of a molecular beam have been observed and assigned. Each transition is split into two or more components by the tunneling motion of the attached -CH(2)OH group. A similar splitting is observed in the microwave spectrum of 4FBA. Analyses of these data show that 4FBA has a gauche structure in both electronic states, but that the ground state C(1)C(2)-C(7)O dihedral angle of ~60° changes by ~30° when the photon is absorbed. The barriers to the torsional motion of the attached -CH(2)OH group are also quite different in the two electronic states; V(2) ~ 300 cm(-1) high and ~60° wide in the S(0) state, and V(2) ~ 300 cm(-1) high and ~120° wide (or V(2) ~ 1200 cm(-1) high and ~60° wide) in the S(1) state. Possible reasons for these behaviors are discussed.  相似文献   

9.
The torsional barrier was calculated in the 3-21G basis set for 1-, 2-, and 5-phenylimidazole. Full geometry optimization was carried out at inter-ring torsional angles of 0°, 30°, 60°, 90°, 120°, 150°, 180°, and additional intermediate angles. All torsional potential energies were found to be symmetric with respect to the 90° conformation. The 2-phenylimidazole torsional energy exhibits a minimum at 0° (and 180°) and a maximum at 90° with a barrier height of 5.83 kcal/mol relative to the 0° conformation. The minima in the 1- and 5-phenylimidazole torsional potential energies correspond to non-planar conformations, resulting in a double-well potential with maxima at 0° (180°) and 90°. The 1-phenylimidazole minima are located at 46.5 and 133.5°; the 5-phenylimidazole minima, at 35.3 and 144.7°. In the 0° (180°) and 90° conformations, 1-phenylimidazole exhibits torsional barriers of 1.84 and 0.75 kcal/mol, respectively, relative to the energy of the 46.5° conformation. For 5-phenylimidazole, these barriers are 0.94 and 1.89 kcal/mol, relative to the energy of the 35.3° conformation. The energy of 5-phenylimidazole in the 35.3° conformation corresponds to a relative tautomeric energy difference of 1.80 kcal/mol compared to the 0° conformer of the 4-phenylimidazole tautomer.  相似文献   

10.
We investigated the spectroscopy of the first excited singlet electronic state S1 of 2-phenylindene using both fluorescence excitation spectroscopy and resonantly enhanced multiphoton ionization spectroscopy. Moreover, we investigated the dynamics of the S1 state by determining state-selective fluorescence lifetimes up to an excess energy of approximately 3400 cm(-1). Ab initio calculations were performed on the torsional potential energy curve and the equilibrium and transition state geometries and normal-mode frequencies of the first excited singlet state S1 on the CIS level of theory. Numerous vibronic transitions were assigned, especially those involving the torsional normal mode. The torsional potentials of the ground and first excited electronic states were simulated by matching the observed and calculated torsional frequency spacings in a least-squares fitting procedure. The simulated S1 potential showed very good agreement with the ab initio potential calculated on the CIS/6-31G(d,p) level of theory. TDDFT energy corrections improved the match with the simulated S(1) torsional potential. The latter calculation yielded a torsional barrier of V2 = 6708 cm(-1), and the simulation a barrier of V2 = 6245 cm(-1). Ground-state normal-mode frequencies were calculated on the B3LYP/6-31G(d,p) level of theory, which were used to interpret the infrared spectrum, the FDS spectrum of the transition and hot bands of the FES spectrum. The fluorescence intensities of the nu49 overtone progression could reasonably be reproduced by considering the geometry changes upon electronic excitation predicted by the ab initio calculations. On the basis of the torsional potential calculations, it could be ruled out that the uniform excess energy dependence of the fluorescence lifetimes is linked to the torsional barrier in the excited state. The rotational band contour simulation of the transition yielded rotational constants in close agreement to the ab initio values for both electronic states. Rotational coherence signals were obtained by polarization-analyzed, time-resolved measurements of the fluorescence decay of the transition. The simulation of these signals yielded corroborating evidence as to the quality of the ab initio calculated rotational constants of both states. The origin of the anomalous intensity discrepancy between the fluorescence excitation spectrum and the REMPI spectrum is discussed.  相似文献   

11.
The role of ring torsion in the enhancement of intramolecular vibrational energy redistribution (IVR) in aromatic molecules was investigated by conducting excitation and dispersed fluorescence spectroscopy of 1,1'-binaphthyl (1,1'-BN) and 2,2'-BN. The dispersed fluorescence spectra of 1,1'-BN in the origin region of S(1)-S(0) were well resolved, which presented 25-27 cm(-1) gaps of torsional mode in the ground state. The overall profile of the dispersed spectra of 1,1'-BN is similar to that of naphthalene. In contrast, the spectra of 2,2'-BN were not resolved due to the multitude of the active torsional modes. In both cases, dissipative IVR was observed to take place with a relatively small excess vibrational energy: 237.5 cm(-1) for 1,1'-BN and 658 cm(-1) for 2,2'-BN, which clearly shows that ring torsion efficiently enhances the IVR rate. Ab initio and density functional theory calculations with medium-sized basis sets showed that the torsional potential of 1,1'-BN has a very flat minimum over the range of torsional angles from ca. 60° to 120°, whereas that of 2,2'-BN showed two well-defined potential minima at ca. 40° and 140°, in resemblance to the case of biphenyl. In this work, we propose that aromatic molecules be classified into "strong" and "weak" torsional hindrance cases: molecules with strong hindrance case show shorter torsional progressions and more effective IVR dynamics than do those with weak hindrance.  相似文献   

12.
This article reports the striking interplay between the molecular structure and the photodissociation dynamics of catechol (a key dihydroxybenzene), identified using a combination of electronic spectroscopy, hydrogen (Rydberg) atom photofragment translational spectroscopy, density functional theory and second order approximate coupled cluster methods. We describe how the non-planar (C(1) symmetry) ← planar (C(s) symmetry) geometry change during S(1) (1(1)ππ*) ←S(0) excitation in catechol, as well as the presence of internal hydrogen bonding, can perturb the photodissociation dynamics relative to that of phenol (a monohydroxybenzene), particularly with respect to O-H bond fission via the lowest dissociative (1)πσ* state. For λ(phot) > 270 nm, O-H bond fission (of the non hydrogen bonded hydroxyl moiety) is deduced to proceed via H atom tunnelling from the photo-prepared 1(1)ππ* state into the lowest (1)πσ* state of the molecule. The vibrational energy distribution in the resulting catechoxyl product changes notably as λ(phot) is tuned on resonance with either the v' = 0, m(2)' = 1(+) or m(2)' = 2(+) torsional levels of the photo-prepared 1(1)ππ* state: the product state distribution is highly sensitive to the degree of OH torsional excitation (m(2)) prepared during photo-excitation. It is deduced that such torsional excitation can be redistributed very efficiently into ring puckering (and likely also in-plane ring stretch) vibrations as the molecule tunnels to its repulsive 1(1)πσ* state and dissociates. These observations can be rationalised by consideration of the photo-prepared nuclear wavefunctions. Analysis of the product vibrational energy distribution also reveals that the O-H bond strength of the non hydrogen bonded O-H moiety in catechol, D(0)(H-catechoxyl) ≤ 27?480 ± 50 cm(-1), ~2500 cm(-1) lower than that of the sole O-H bond in bare phenol. As a consequence, the vertical excitation energy of the 1(1)πσ* state in catechol is reduced relative to that in phenol, yielding a particularly broad distribution of product vibrations for λ(phot) < 270 nm. This study highlights the interplay between molecular geometry and redistribution of vibrational energy during ultraviolet photolysis of phenols.  相似文献   

13.
Rotationally resolved pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X-->X+ transition in ethylene and ethylene-d4 have been recorded at a resolution of 0.09 cm(-1). The spectra provide new information on the large amplitude torsional motion in the cationic ground state. An effective one-dimensional torsional potential was determined from the experimental data. Both C2H4+ and C2D4+ exhibit a twisted geometry, and the lowest two levels of the torsional potential form a tunneling pair with a tunneling splitting of 83.7(5) cm(-1) in C2H4+ and of 37.1(5) cm(-1) in C2D4+. A model was developed to quantitatively analyze the rotational structure of the photoelectron spectra by generalizing the model of Buckingham, Orr, and Sichel [Philos. Trans. R. Soc. London, Ser. A 268, 147 (1970)] to treat asymmetric top molecules. The quantitative analysis of the rotational intensity distributions of allowed as well as forbidden vibrational bands enabled the identification of strong vibronic mixing between the X+ and A+ states mediated by the torsional mode nu(4) and a weaker mixing between the X+ and B+ states mediated by the symmetric CH2 out-of-plane bending mode nu7. The vibrational intensities could be accounted for quantitatively using a Herzberg-Teller-type model for vibronic intensity borrowing. The adiabatic ionization energies of C2H4 and C2D4 were determined to be 84 790.42(23) cm(-1) and 84 913.3(14) cm(-1), respectively.  相似文献   

14.
Hydrogen trioxy (HOOO) and its deuterated analog (DOOO) have been generated in a supersonic free-jet expansion through association of photolytically generated OH or OD and molecular oxygen. The radicals were detected using infrared action spectroscopy, a highly sensitive double resonance technique. Rotationally resolved spectra of combination bands of HOOO and DOOO comprising one quantum of OH or OD stretch (nu(1)) and one quantum of a lower frequency mode (nu(1)+nu(n) where n=3-6), including HDOO bend (nu(3)), OOO bend (nu(4)), central OO stretch (nu(5)), and HDOOO torsion (nu(6)), have been observed and assigned to the trans conformer. All but one of these bands are accompanied by unstructured features which are tentatively assigned to the corresponding vibration of the cis conformer. In total, five additional bands of HOOO and four of DOOO have been recorded and assigned. These data represent the first gas-phase observation of the low-frequency modes of HOOO and DOOO and they are found to differ significantly from previous matrix studies and theoretical predictions. Accurate knowledge of the vibrational frequencies is crucial in assessing thermochemical properties of HOOO and present possible means of detection in the atmosphere.  相似文献   

15.
CCSD(T) state-of-the-art ab initio calculations are used to determine a vibrationally corrected three-dimensional potential energy surface of dimethyl-ether depending on the two methyl torsions and the COC bending angle. The surface is employed to obtain variationally the lowest vibrational energies that can be populated at very low temperatures. The interactions between the bending and the torsional coordinates are responsible for the displacements of the torsional overtone bands and several combination bands. The effect of these interactions on the potential parameters is analyzed. Second order perturbation theory is used as a help for the understanding of many spectroscopic parameters and to obtain anharmonic fundamentals for the 3N - 9 neglected modes as well as the rotational parameters. To evaluate the surface accuracy and to verify previous assignments, the calculated vibrational levels are compared with experimental data corresponding to the most abundant isotopologue. The surface has been empirically adjusted for understanding the origin of small divergences between ab initio calculations and experimental data. Our calculations confirm previous assignments and show the importance of including the COC bending degree of freedom for computing with a higher accuracy the excited torsional term values through the Fermi interaction. Besides, this work shows a possible lack of accuracy of some available experimental transition frequencies and proposes a new assignment for a transition line. As an example, the transition 100 → 120 has been computed at 445.93 cm(-1), which is consistent with the observed transition frequency in the Raman spectrum at 450.5 cm(-1).  相似文献   

16.
An analysis of the torsional spectrum of monodeuterated methanol CH(2)DOH is presented. Twenty nine torsional subbands have been assigned in the 20-800 cm(-1) region. The newly assigned subbands and those already available in the literature were analyzed with a theoretical approach accounting for internal rotation of an asymmetrical CH(2)D methyl group. Seventy six subband centers were reproduced with an rms value of 0.09 cm(-1). Spectroscopic parameters corresponding to the generalized inertia tensor and to the hindering potential were determined as well as rotation-torsion distortion constants.  相似文献   

17.
High-level ab initio electronic structure calculations, including extrapolations to the complete basis set limit as well as relativistic and diagonal Born-Oppenheimer corrections, resulted in a torsional potential of acetaldehyde in its electronic ground state. This benchmark-quality potential fully reflects the symmetry and internal rotation dynamics of this molecule in the energy range probed by spectroscopic experiments in the infrared and microwave regions. The torsional transition frequencies calculated from this potential and the ab initio torsional inverse effective mass function are within 2 cm(-1) of the available experimental values. Furthermore, the computed contortional parameter rho of the rho-axis system Hamiltonian is also in excellent agreement with that obtained from spectral analyses of acetaldehyde.  相似文献   

18.
Infrared spectra of jet-cooled CH(3)OD and CH(3)OH in the CH stretch region are observed by coherence-converted population transfer Fourier transform microwave-infrared (CCPT-FTMW-IR) spectroscopy (E torsional species only) and by slit-jet single resonance spectroscopy (both A and E torsional species, CH(3)OH only). Twagirayezu et al. reported the analysis of ν(3) symmetric CH stretch region (2750-2900 cm(-1); Twagirayezu et al. J. Phys. Chem. A 2010, 114, 6818), and the present work addresses the more complicated higher frequency region (2900-3020 cm(-1)) containing the two asymmetric CH stretches (ν(2) and ν(9)). The additional complications include a higher density of coupled states, more extensive mixing, and evidence for Coriolis as well as anharmonic coupling. The overall observed spectra contain 17 interacting vibrational bands for CH(3)OD and 28 for CH(3)OH. The sign and magnitude of the torsional tunneling splittings are deduced for three CH stretch fundamentals (ν(3), ν(2), ν(9)) of both molecules and are compared to a model calculation and to ab initio theory. The number and distribution of observed vibrational bands indicate that the CH stretch bright states couple first to doorway states that are binary combinations of bending modes. In the parts of the spectrum where doorway states are present, the observed density of coupled states is comparable to the total density of vibrational states in the molecule, but where there are no doorway states, only the CH stretch fundamentals are observed. Above 2900 cm(-1), the available doorway states are CH bending states, but below, the doorway states also involve OH bending. A time-dependent interpretation of the present FTMW-IR spectra indicates a fast (~200 fs) initial decay of the bright state followed by a second, slower redistribution (about 1-3 ps). The qualitative agreement of the present data with the time-dependent experiments of Iwaki and Dlott provides further support for the similarity of the fastest vibrational relaxation processes in the liquid and gas phases.  相似文献   

19.
Intrinsic reaction coordinate (IRC) calculations of the internal rotation (torsional) potentials for H(2)O(2) and its isotopomers HDO(2) and D(2)O(2) were carried out at the CCSD(T)/CBS//aug-cc-pVDZ level. Two extrapolation methods were used to obtain energies in the complete basis set (CBS) limit. The full IRC potential was constructed from scans from the C(2v) (cis) and C(2h) (trans) transition states to the equilibrium C(2) (gauche) structure. The IRC potential for H(2)O(2) was fit to a five-term Fourier function; coefficients were compared with values obtained from spectroscopic data. The twofold IRC torsional potentials were used to obtain torsional eigenvalues, which yielded values of the transitions between various ntau states. These results compare favorably with Raman and near-infrared data. Our calculations provide values of the cis and trans barriers of 2495 and 364 cm(-1), respectively, which are in good agreement with both previously calculated and experimentally derived values. It appears that coupling between torsional motion and other degrees of freedom is not significant in these molecules.  相似文献   

20.
The energetic splitting of the two exciton states of a molecular dimer depends strongly on the relative orientation of the monomers with respect to each other. The curvature of the corresponding adiabatic potential energy surfaces can lead to torsional motion of the monomers. It has been suggested recently that this torsional motion could provide a possible relaxation mechanism for the upper state which proceeds via a crossing of the two singly excited state potentials. Another, competing, relaxation mechanism is provided by coupling to the environment, leading to direct exciton relaxation. Here we examine theoretically the combined dynamics of torsional motion and excitonic relaxation for a π-aggregated dimer. Using two-dimensional (2D) spectroscopy, it is shown how torsional motion through a crossing of the adiabatic excitonic potential surfaces could be distinguished from direct relaxation. For the calculations a mixed quantum/classical approach is used, where the torsional motion is treated by an Ehrenfest type of equation, while the excitonic dynamics including dephasing and direct relaxation is described by a quantum master equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号