首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
用液相离子交换法制备了NiY分子筛,并用XRD、TEM、ICP、N2吸附和吡啶吸附原位红外技术等表征手段对其进行了表征. 利用固定床、气相色谱-硫发光检测器(GC-SCD)及傅里叶红外光谱(FT-IR)等方法系统研究了NiY分子筛对噻吩、2-甲基噻吩、3-甲基噻吩、四氢噻吩、苯并噻吩、二苯并噻吩、4-甲基二苯并噻吩、4,6-二甲基二苯并噻吩8种有机硫化物的选择性吸附脱硫性能和吸附机理. 结果表明,NiY分子筛对硫化物的穿透吸附硫容量顺序为四氢噻吩﹥苯并噻吩≈二苯并噻吩≈4,6-二甲基二苯并噻吩﹥4-甲基二苯并噻吩﹥2-甲基噻吩≈3-甲基噻吩﹥噻吩,说明有机硫化物的空间位阻效应不是其在NiY分子筛上吸附的决定因素. 红外结果表明,不同硫化物与NiY分子筛的作用机理并不相同,但主要以硫原子与金属离子配位作用(S-M作用)为主. 噻吩及其烷基取代物在NiY吸附剂上表面酸性作用下发生催化反应,噻吩环的共轭体系遭到破坏形成硫化物大分子或聚合物,导致分子筛孔道的堵塞,严重影响吸附剂的吸附脱硫能力. NiY的选择性吸附脱硫性能是硫化物与吸附中心的作用模式及吸附剂表面酸性综合作用的结果.  相似文献   

2.
利用H_4EDTA-NaOH共处理的方法制备了具有不同孔径分布的多级微-介孔NaY分子筛。运用XRD、N_2吸附、SEM、TEM对其结构进行了表征。采用频率响应(FR)和智能重量分析仪(IGA)技术研究了苯在改性后的多级孔NaY分子筛及微孔NaY分子筛上的吸附和传质性能。结果表明,适当的酸碱处理不会改变分子筛的晶体结构,但可调变NaY分子筛的精细结构;介孔的引入降低了分子在孔道中的扩散阻力,较大的孔径和较好的孔道贯通性有利于扩散和吸附中心的可接近性;对于微孔NaY分子筛,苯在分子筛上的吸附过程为其传质过程的速控步骤,对于酸碱处理的多级孔NaY分子筛,分子筛颗粒中微/介孔内的扩散过程及分子筛微-介孔孔道间的分子交换过程是传质过程的速控步骤。  相似文献   

3.
采用原位红外光谱技术,以噻吩、环己烯和苯为模型探针分子,分别考察单一烃分子在NiY分子筛上的吸附与反应行为以及噻吩与烯烃、芳烃间的竞争吸附和催化反应行为。单一探针分子吸附研究发现,NiY分子筛中与Ni物种相关的Lewis(L)酸位是噻吩的选择性吸附活性位;噻吩和环己烯在NiY分子筛中Brnsted(B)酸位上发生的质子化和低聚反应明显弱于HY分子筛。双探针分子竞争吸附研究发现,环己烯二聚体在NiY中强B酸位上的强化学吸附与噻吩存在显著的竞争吸附行为。另外,苯和噻吩在NiY上的竞争吸附现象在373K时明显减弱。由此,在选择性吸附脱硫过程中,减少吸附剂表面B酸中心可降低烯烃对噻吩的竞争吸附,另外适当提高吸附体系的温度可以有效避免芳烃对噻吩的竞争吸附。  相似文献   

4.
采用吡啶原位吸附傅里叶变换红外(Py-FTIR)光谱对液相离子交换(LPIE)和固相离子交换(SSIE)法制备的CeY分子筛以及HY和NaY的酸性进行了测定. 在原位条件下采用单探针分子噻吩、环己烯和苯对其在分子筛上的吸附过程进行了研究; 以噻吩和环己烯、噻吩和苯组成的双探针分子对吸附过程中存在的竞争吸附、催化反应以及吸附机理进行了系统研究. 结果表明, HY和L-CeY 分子筛表面强Brönsted (B)酸性位可导致吸附在其表面的噻吩发生低聚反应以及吸附的环己烯产生二聚环己烯碳正离子. 低聚的噻吩和吸附的环己烯在分子筛上发生强的化学吸附, 进一步抑制和阻碍噻吩硫化物与分子筛吸附活性中心发生作用, 从而降低了吸附剂的选择性以及吸附硫化物的能力. 吸附剂表面Lewis (L)酸中心是吸附的主要活性中心, 大量弱的L 酸, 有利于噻吩吸附. 并且, S-CeY分子筛表面弱的L酸对吸附噻吩具有一定的选择性, 它受到环己烯的影响较小, NaY吸附剂对噻吩、环己烯和苯选择性较差, 它只与吸附质作用的先后有关.  相似文献   

5.
改性Y型分子筛的吸附脱硫性能以及苯,萘对吸附的影响   总被引:2,自引:0,他引:2  
采用离子交换法制备了经金属离子改性的Y型分子筛吸附剂, 并用XRF, XRD, XPS对吸附剂的化学组成, 晶相结构等进行了表征. 以含噻吩, 苯并噻吩的辛烷溶液为模型燃料考察了吸附剂的吸附脱硫性能以及苯, 萘对脱硫的影响. 结果表明, Cu(Ⅰ)Y, CuZnY具有较大的吸附容量, 而苯对苯并噻吩吸附脱除性能几乎没有影响, 但对噻吩的吸附性能影响较大, 萘对苯并噻吩和噻吩的脱除都有较大的抑制作用. 并由此推测, 吸附剂与苯并噻吩或萘的结合比噻吩或苯更紧密, 吸附的机理是π络合.  相似文献   

6.
苯和1-辛烯对Ce(Ⅳ)Y分子筛选择性吸附脱硫的影响   总被引:2,自引:0,他引:2  
选取苯和1-辛烯作为模拟汽油中的芳烃和烯烃,分别研究它们对Ce(Ⅳ)Y分子筛选择性吸附脱硫的影响.结果表明,吸附剂的选择性吸附脱硫性能随着模拟油中苯和1-辛烯含量的增加而显著降低.借助傅立叶变换红外光谱(FT-IR)、紫外漫反射光谱(UV-DRS)技术研究发现.Ce(Ⅳ)Y分子筛对苯和1-辛烯的吸附模式及影响脱硫的机理是不同的.Ce(Ⅳ)Y分子筛阳离子和苯形成π络合作用,作用力较弱,容易脱附;而与1-辛烯的双键发生σ-π络合,不容易脱附.在Ce(Ⅳ)Y分子筛选择性吸附含苯模拟油中的硫化物时,由于苯的存在,苯和噻吩在分子筛表面存在严重竞争吸附,影响了吸附剂的选择性脱硫.而在含1-辛烯的模拟油中,由于1-辛烯直接和分子筛发生强相互作用,占据了吸附剂的活性位,导致Ce(Ⅳ)Y分子筛的脱硫性能显著降低.  相似文献   

7.
选取苯和1-辛烯作为模拟汽油中的芳烃和烯烃, 分别研究它们对Ce(IV)Y分子筛选择性吸附脱硫的影响. 结果表明, 吸附剂的选择性吸附脱硫性能随着模拟油中苯和1-辛烯含量的增加而显著降低. 借助傅立叶变换红外光谱(FT-IR)、紫外漫反射光谱(UV-DRS)技术研究发现, Ce(IV)Y分子筛对苯和1-辛烯的吸附模式及影响脱硫的机理是不同的. Ce(IV)Y分子筛阳离子和苯形成π络合作用, 作用力较弱, 容易脱附; 而与1-辛烯的双键发生σ-π络合, 不容易脱附. 在Ce(IV)Y分子筛选择性吸附含苯模拟油中的硫化物时, 由于苯的存在, 苯和噻吩在分子筛表面存在严重竞争吸附, 影响了吸附剂的选择性脱硫. 而在含1-辛烯的模拟油中, 由于1-辛烯直接和分子筛发生强相互作用, 占据了吸附剂的活性位, 导致Ce(IV)Y分子筛的脱硫性能显著降低.  相似文献   

8.
采用液相离子交换(LPIE)法制备了CeY分子筛,并研究烯烃和芳烃对其吸附脱硫性能的影响.利用固定床穿透曲线技术研究吸附剂的脱硫性能,结果表明:烯烃和芳烃的存在均导致吸附剂吸附硫容量减少,然而,烯烃的影响明显强于芳烃.采用原位傅里叶变换红外(FTIR)光谱技术研究噻吩、环己烯和苯的吸附行为,结果发现:烯烃和芳烃降低吸附剂脱硫性能的实质分别为吸附剂表面酸性导致的酸催化反应和π-络合吸附的芳烃分子与硫化物分子的竞争吸附.另外,烯烃的影响取决于吸附剂的表面酸性,尤其是强B酸(Br?nsted酸)中心.这是由于B酸中心会导致烯烃和噻吩发生质子化反应,且质子化物种易于进一步发生低聚反应.生成的低聚物覆盖吸附活性中心导致吸附剂对其它噻吩分子的吸附能力降低.  相似文献   

9.
研究了不同硫化物在CeY上吸附后的红外光谱,总结了吸附作用机理;以噻吩作为模拟油中的硫化物,根据红外光谱信息研究烯烃对CeY分子筛选择性吸附脱硫性能的影响。结果表明,不同硫化物与CeY分子筛的作用方式不尽相同,但都在分子筛表面发生催化反应;CeY分子筛阳离子和烯烃的双键发生了σ—π络合,从而跟与CeY存在SM作用的噻吩形成了竞争吸附。噻吩存在下,烯烃在CeY表面发生了更为严重的催化反应,生成了大分子聚合物,占据吸附剂活性位的同时堵塞了分子筛表面孔道,导致CeY分子筛的脱硫性能显著降低。  相似文献   

10.
乙烯在丝光沸石和改性丝光沸石孔道内的吸附行为   总被引:1,自引:0,他引:1  
采用频率响应(FR)法研究乙烯在丝光沸石和经CuO和Cs+离子改性的丝光沸石上的吸附机理. 分别测得和解析了252和273 K、压力在26.6-3990 Pa范围内的FR谱图, 发现乙烯在丝光沸石上吸附的速控步骤是传质过程, 同时存在两个不同的吸附过程. 这两个过程分别归属于乙烯在质子酸吸附中心上的吸附(低频吸附)和Na+吸附位上的吸附(高频吸附), 252 K时两个吸附位的吸附值分别是0.692和0.828 mmol·g-1. CuO分子进入分子筛孔道后, 位于质子酸吸附位之间不但使得低频吸附位值增加而且还覆盖了Na+吸附位, 体系中以化学吸附过程为主; Cs+离子的引入使得高频吸附位值增加但中和了质子酸吸附位, 体系中以物理吸附过程为主. CuO的最佳用量是5%. 将FR法与吸附等温线及Langmuir模型相结合能够深入研究乙烯在分子筛上的平行吸附过程.  相似文献   

11.
以不同焙烧温度和Ce负载量的CeY分子筛为研究对象,运用XRD及N_2吸附表征其织构性质;运用吡啶吸附红外光谱法剖析了分子筛中活性位的化学属性;采用固定床评价其对噻吩模拟油的吸附脱硫性能及芳烃和烯烃对噻吩脱除的影响;并结合红外光谱和GC-SCD技术分析了其脱硫机制。结果表明,CeY样品经150℃焙烧后,其超笼中具备高含量的B酸和Ce羟基化物种活性位,两者协同增强了噻吩低聚反应能力,进而提高了其吸附穿透硫容量(18.45 mg (S)/g);而提升焙烧温度和Ce负载量会严重降低其有效活性位的数量,削弱了噻吩低聚反应能力,其吸附穿透硫容量显著减小(4.03 mg (S)/g)。当加入烯烃和芳烃后,CeY-12.3-150吸附剂对含低浓度(质量分数)1-己烯(1.0%)和苯(0.1%)的噻吩模拟油依旧保持较高吸附穿透硫容量;但随两者含量的持续增加,其硫容量急剧下降。其主要分别归因于噻吩烷基化反应的发生及“S-H”键的作用模式。  相似文献   

12.
应用巨正则蒙特卡罗模拟方法研究了噻吩分子以及噻吩与异辛烷混合物在MCM-22分子筛中的吸附和分布. 通过模拟获得了噻吩分子在MCM-22分子筛中不同温度(298、363 和393 K)下的吸附等温线和等量吸附热, 以及298 K时噻吩和异辛烷分子二元混合物在MCM-22分子筛中的吸附及分布情况. 结果表明, 吸附温度和吸附压力对噻吩分子在MCM-22分子筛吸附都有影响, 但等量吸附热受温度和吸附量影响较小. 对于二元混合物的吸附, 噻吩和异辛烷在分子筛中存在竞争吸附过程, 噻吩能够大量吸附在MCM-22分子的十元环和超笼中, 而异辛烷主要吸附在MCM-22分子筛的超笼系统, 从而可以将噻吩分子与异辛烷分子分离开来.  相似文献   

13.
分子模拟噻吩、苯、正己烷混合物在MFI和MOR中的吸附行为   总被引:1,自引:0,他引:1  
采用GCMC方法模拟了噻吩-苯二元组分和噻吩-苯-正己烷三元组分在MFI和MOR沸石中的吸附分离性能. 结果表明, 对于噻吩-苯二元体系, 在MFI孔道中, 噻吩分子比苯分子都优先定位于孔道的交叉部分, 当总压升高时, 苯的吸附量增加, 噻吩的吸附量保持不变, 苯分子被噻吩分子“挤”到直型孔道之中, 该二元体系符合Clark等提出的竞争吸附模型. 而对于在MOR中的吸附, 噻吩和苯分子没有表现出明显不同的优先吸附位, 符合Clark等提出的体积填充模型. 对于噻吩-苯-正己烷三元体系, 在MFI沸石中, 正己烷的吸附量最大, 噻吩和苯的吸附量很小. 而对于MOR沸石, 噻吩的吸附量最大, 苯和正己烷的吸附量小, 对于这三种较大尺寸的分子, 只能位于MOR主孔道中, 当存在着少量的正己烷分子时, 就影响到了苯的吸附, 而正己烷对噻吩在MOR孔道中填充的影响要比苯小, 噻吩的吸附量影响不大.  相似文献   

14.
通过液相离子交换法制备了Cu(I)Y、Ni Y、Ce Y分子筛,以XRD、低温N2吸附-脱附、NH3-TPD、吡啶红外Py-FTIR等方法对其进行物性表征。利用固定床技术、WK-2D微库伦仪及硫化学发光检测GC-SCD色谱评价了改性分子筛对于硫含量300μg/g模拟油(含硫化合物二丙硫醚、环己硫醇和1-庚硫醇与壬烷配制)及HDS汽油的吸附脱硫性能。结果表明,吸附剂对模拟油和HDS燃料油品中硫醇硫醚具有吸附效果,且改性后的分子筛在吸附脱硫过程中,强的B酸对于吸附脱硫有负作用,会使油品中硫醇硫醚发生催化反应,聚合的大分子硫化物遮盖及阻塞吸附活性位点,从而使吸附剂不能够完全地吸附硫化物,造成吸附硫容较小,而弱L酸无催化活性对吸附脱硫有正面影响。  相似文献   

15.
以液相离子交换法制备了一系列不同Cu负载量的CuNaY分子筛;采用XRD及N2吸附-脱附表征分子筛的微观结构和织构性质,采用动态吸附法考察其对噻吩模拟油的吸附脱硫性能,结合NH3-TPD和Py-FTIR方法对CuNaY分子筛的酸量和有效Cu+物种进行定量分析,研究了CuNaY分子筛的表面酸性和铜物种形态结构对其吸附脱硫性能的影响机制。结果表明,通过改变铜负载量可有效调控改性Y分子筛的表面酸性以及铜物种化学形态;适量铜物种的引入可以最大限度的形成有效吸附位,从而获得最优吸附脱硫性能,而过量的Cu物种会在Y分子筛笼内形成多核铜物种结构,导致有效吸附位点的减少,影响其对噻吩的吸附能力。  相似文献   

16.
在氮气气氛下采用等体积浸渍法制备了载Cu的HY和LaHY分子筛.用x射线衍射(XRD)、N2吸附、氨程序升温脱附和X射线光电子能谱对分子筛进行了表征.通过多晶XRD确定了Cu2+离子在Y型分子筛笼内的结构与分布,并测定了分子筛在含二苯并噻吩(DBT)的模拟柴油中的吸附脱硫性能.结果表明,前驱体CuCl2中的大部分Cu物种与HY和LaHY分子筛进行了离子交换.对于La3+改性的CuHY分子筛(CuLaHY),进入分子筛超笼中的Cu2+离子与骨架氧和水分子配位,牢固地定位于Y型分子筛超笼的SⅡ及SⅢ位;对于CuHY分子筛,超笼中的Cu2+离子只接近于SⅡ及SⅢ位.极少部分CuCl分子高度分散在分子筛笼内,没有定位.处于超笼中SⅡ及SⅢ位的Cu2+离子对模拟柴油中的DBT分子具有吸附作用,是吸附脱硫的活性中心.CuLaHY分子筛的吸附脱硫性能优于CuHY分子筛.当模拟柴油中含有萘时,萘与DBT分子会产生竞争吸附.  相似文献   

17.
采用液相离子交换(LPIE)法制备了CeY分子筛,并研究烯烃和芳烃对其吸附脱硫性能的影响. 利用固定床穿透曲线技术研究吸附剂的脱硫性能,结果表明:烯烃和芳烃的存在均导致吸附剂吸附硫容量减少,然而,烯烃的影响明显强于芳烃. 采用原位傅里叶变换红外(FTIR)光谱技术研究噻吩、环己烯和苯的吸附行为,结果发现:烯烃和芳烃降低吸附剂脱硫性能的实质分别为吸附剂表面酸性导致的酸催化反应和π-络合吸附的芳烃分子与硫化物分子的竞争吸附. 另外,烯烃的影响取决于吸附剂的表面酸性,尤其是强B酸(Brönsted 酸)中心.这是由于B酸中心会导致烯烃和噻吩发生质子化反应,且质子化物种易于进一步发生低聚反应. 生成的低聚物覆盖吸附活性中心导致吸附剂对其它噻吩分子的吸附能力降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号