首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A necessary and sufficient condition for the boundedness of the operator: $(T_{s,u,u} f)(\xi ) = h^{u + \tfrac{v}{a}} (\xi )\smallint _{\Omega _a } h^s (\xi ')K_{s,u,v} (\xi ,\xi ')f(\xi ')dv(\xi ') on L^p (\Omega _a ,dv_\lambda ),1< p< \infty $ , is obtained, where $\Omega _a = \left\{ {\xi = (z,w) \in \mathbb{C}^{n + m} :z \in \mathbb{C}^n ,w \in \mathbb{C}^m ,|z|^2 + |w|^{2/a}< 1} \right\},h(\xi ) = (1 - |z|^2 )^a - |w|^2 $ andK x,u,v (ξ,ξ′).This generalizes the works in literature from the unit ball or unit disc to the weakly pseudoconvex domain ω a . As an appli cation, it is proved thatf?L H p a ,dv λ) implies $h\tfrac{{|a|}}{a} + |\beta |(\xi )D_2^a D_z^\beta f \in L^p (\Omega _a ,dv_\lambda ),1 \leqslant p< \infty $ , for any multi-indexa=(α1,?,α n and ß = (ß1, —ß). An interesting question is whether the converse holds.  相似文献   

2.
It is proved that the problem $$\mathop {\sum\nolimits_{i = 1}^v {\nabla _i (|\nabla u|^{p - 2} \nabla _i u)^ - |u|^{p * - 1} u + \lambda |u|^{p - 2} u = 0 in \Omega .} }\limits_{n = 0 on \partial \Omega .}$$ where Ω ?R N a singly-connected region with an “odd” boundary, N > p, and p* = Np/(N ? p) is a critical Sobolev exponent, has, under the appropriate conditions on λ, q, and N, no less than (2N+2) nontrivial solutions in \(\mathop W\limits^0 _{p^1 } (\Omega )\) .  相似文献   

3.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

4.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

5.
6.
In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem
$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$
where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and
$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$
By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.
  相似文献   

7.
Using variational methods, we study the existence and nonexistence of nontrivial weak solutions for the quasilinear elliptic system $$\left\{\begin{array}{ll}- {\rm div}(h_1(|\nabla u|^2)\nabla u) = \frac{\mu}{|x|^2}u + \lambda F_u(x, u, \upsilon)\quad {\rm in}\,\Omega,\\- {\rm div}(h_2(|\nabla \upsilon|^2)\nabla \upsilon) = \frac{\mu}{|x|^2}\upsilon + \lambda F_\upsilon(x,u,\upsilon)\quad {\rm in}\,\Omega,\\u = \upsilon = 0 \qquad \qquad \qquad \qquad \qquad \qquad {\rm in}\, \partial\Omega, \end{array}\right.$$ where \({\Omega \subset \mathbb{R}^N,N \geq 3}\) , is a bounded domain containing the origin with smooth boundary \({\partial \Omega ; h_i, i = 1, 2}\) , are nonhomogeneous potentials; \({(F_u, F_v) = \nabla F}\) stands for the gradient of a sign-changing C 1-function \({F : \Omega \times \mathbb{R}^2 \to \mathbb{R}}\) in the variable \({{w = (u, v) \in \mathbb{R}^2}}\) ; and λ and μ are parameters.  相似文献   

8.
In this paper we deal with solutions of problems of the type $$\left\{\begin{array}{ll}-{\rm div} \Big(\frac{a(x)Du}{(1+|u|)^2} \Big)+u = \frac{b(x)|Du|^2}{(1+|u|)^3} +f \quad &{\rm in} \, \Omega,\\ u=0 &{\rm on} \partial \, \Omega, \end{array} \right.$$ where ${0 < \alpha \leq a(x) \leq \beta, |b(x)| \leq \gamma, \gamma > 0, f \in L^2 (\Omega)}$ and Ω is a bounded subset of ${\mathbb{R}^N}$ with N ≥ 3. We prove the existence of at least one solution for such a problem in the space ${W_{0}^{1, 1}(\Omega) \cap L^{2}(\Omega)}$ if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: $$J (v) = \frac{\alpha}{2} \int_{\Omega}\frac{|D v|^2}{(1 + |v|)^{2}} + \frac{12}{\int_{\Omega}|v|^2} - \int_{\Omega}f\,v , \quad f \in L^2(\Omega),$$ where in this case a(x) ≡ b(x) = α > 0.  相似文献   

9.
We study the problem $$ \left\{\begin{array}{ll} {-\varepsilon^{2}\mathcal{M}^+_{\lambda,\Lambda}(D^{2}u) = f (x, u)} \quad\; {\rm in} \; \Omega,\\ {u = 0} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad {\rm on} \; \partial{\Omega}, \end{array} \right.$$ where Ω is a smooth bounded domain in ${\mathbb{R}^{N},N > 2,}$ and show it possesses nontrivial solutions for small values of ε provided f is a nonnegative continuous function which has a positive zero. The multiplicity result is based on degree theory together with a new Liouville type theorem for ${-{M}^+_{\lambda,\Lambda}(D^{2}u) = f(u)}$ in ${\mathbb{R}^{N}}$ for nonnegative nonlinearities with zeros.  相似文献   

10.
In this paper, we mainly study the asymptotic behavior of solutions to the following problems ${\triangle u \pm a(x)| \nabla u|^{q} = b(x)f(u), x \in \Omega, \ u|_{\partial \Omega} = + \infty}$ , where Ω is a bounded domain with a smooth boundary in ${\mathbb{R}^{N} (N \geq 2)}$ , q >  0, ${a \in C^{\alpha}(\bar{\Omega})}$ is positive in Ω, and ${b \in C^{\alpha}(\bar{\Omega})}$ is nonnegative in Ω and may be vanishing on the boundary. We assume that f is Γ-varying at ∞, whose variation at ∞ is not regular. Our analysis is based on the sub-supersolution method and Karamata regular variation theory.  相似文献   

11.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

12.
Let Ω be a cone in ${\mathbb {R}^{n}}$ with n ≥? 2. For every fixed ${\alpha \in \mathbb {R}}$ we find the best constant in the Rellich inequality ${\int\nolimits_{\Omega}|x|^{\alpha}|\Delta u|^{2}dx \ge C\int\nolimits_{\Omega}|x|^{\alpha-4}|u|^{2}dx}$ for ${u \in C^{2}_{c}(\overline\Omega\setminus\{0\})}$ . We also estimate the best constant for the same inequality on ${C^{2}_{c}(\Omega)}$ . Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.  相似文献   

13.
LetΩ ? ?2 be a smooth bounded simply connected domain. Consider the functional $$E_\varepsilon (u) = \frac{1}{2}\int\limits_\Omega {\left| {\nabla u} \right|^2 + \frac{1}{{4\varepsilon ^2 }}} \int\limits_\Omega {(|u|^2 - 1)^2 } $$ on the classH g 1 ={u εH 1(Ω; ?);u=g on ?Ω} whereg:?Ω? → ? is a prescribed smooth map with ¦g¦=1 on ?Ω? and deg(g, ?Ω)=0. Let uu ε be a minimizer for Eε onH g 1 . We prove that uε → u0 in \(C^{1,\alpha } (\bar \Omega )\) as ε → 0, where u0 is identified. Moreover \(\left\| {u_\varepsilon - u_0 } \right\|_{L^\infty } \leqslant C\varepsilon ^2 \) .  相似文献   

14.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

15.
In this paper, we consider the nonlocal problem of the form ut-Δu = (λe-u)/(∫Ωe-udx)2,x ∈Ω, t0 and the associated nonlocal stationary problem -Δv = (λe-v)/(∫Ωe-vdx)2, x ∈Ω,where λ is a positive parameter. For Ω to be an annulus, we prove that the nonlocal stationary problemhas a unique solution if and only if λ 2| Ω| 2 , and for λ = 2|Ω|2, the solution of the nonlocal parabolic problem grows up globally to infinity as t →∞.  相似文献   

16.
We study the non-local eigenvalue problem $$\begin{aligned} 2\, \int \limits _{\mathbb{R }^n}\frac{|u(y)-u(x)|^{p-2}\bigl (u(y)-u(x)\bigr )}{|y-x|^{\alpha p}}\,dy +\lambda |u(x)|^{p-2}u(x)=0 \end{aligned}$$ for large values of $p$ and derive the limit equation as $p\rightarrow \infty $ . Its viscosity solutions have many interesting properties and the eigenvalues exhibit a strange behaviour.  相似文献   

17.
We consider degenerate parabolic equations of the form $$\left. \begin{array}{ll}\,\,\, \partial_t u = \Delta_\lambda u + f(u) \\u|_{\partial\Omega} = 0, u|_{t=0} = u_0\end{array}\right.$$ in a bounded domain ${\Omega\subset\mathbb{R}^N}$ , where Δλ is a subelliptic operator of the type $$\quad \Delta_\lambda:= \sum_{i=1}^{N} \partial_{x_i}(\lambda_{i}^{2} \partial_{x_i}),\qquad \lambda = (\lambda_1,\ldots, \lambda_N).$$ We prove global existence of solutions and characterize their longtime behavior. In particular, we show the existence and finite fractal dimension of the global attractor of the generated semigroup and the convergence of solutions to an equilibrium solution when time tends to infinity.  相似文献   

18.
Для заданной на едини чной окружности огра ниченной функцииω(ξ) рассматр ивается усложненная задача а ппроксимации аналит ическими функциями: $$\mathop {\inf }\limits_{\varphi \in H^\infty } \left[ {\left\| {\omega - \varphi } \right\| + \mathop \Sigma \limits_{k = 0}^\infty \varepsilon _k \left| {\lambda _k } \right|} \right],$$ где ∥·∥ понимается вL ,ε k ≧0 — заданные чис ла, $$\mathop \Sigma \limits_{k = 0}^\infty \varepsilon _k< + \infty ,\varphi (z) = \mathop \Sigma \limits_{k = 0}^\infty \lambda _k z^k .$$ Доказывается, что при всех достаточно малы хε k экстремальной в этой задаче будет функция обычного наилучшего приближения (та же, что и приε k =0,k=0, 1, ...). В частности, при $$\omega (\zeta ) = \frac{{\gamma _0 }}{{\zeta ^n }} + \frac{{\gamma _1 }}{{\zeta ^{n - 1} }} + ... + \frac{{\gamma _{n - 1} }}{\zeta }$$ экстремальной оказы вается дробь Каратео дори—Фейера. Переход к двойственн ой задаче позволяет получить т очные оценки для клас са интегралов типа Коши, выделяемого огранич ениями, наложенными на велич ины коэффициентов ря да Тейлора.  相似文献   

19.
We consider an eigenvalue problem of the form $$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$ where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\) . We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near .  相似文献   

20.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号