首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel dinuclear zirconium sandwich-type silicotungstate cluster of [(gamma-SiW(10)O(36))(2)Zr(2)(mu-OH)(2)](10-) (1) was synthesized by the reaction of a divacant lacunary gamma-Keggin silicotungstate [gamma-SiW(10)O(36)](8-) with ZrOCl(2).8H(2)O. The anion consisted of two [gamma-SiW(10)O(36)](8-) units sandwiching a diamond Zr(2)(mu-OH)(2) core, and each zirconium atom in 1 was six-coordinated to two mu-OH ligands and four oxygen atoms of two [gamma-SiW(10)O(36)](8-) units. The Zr(2)(mu-OH)(2) core in 1 reacted with methanol to give the corresponding monomethoxo derivative [(gamma-SiW(10)O(36))(2)Zr(2)(mu-OH)(mu-OCH(3))](10-) (2).  相似文献   

2.
Two polyoxometalate assemblies, TBA(9)[{γ-H(2)SiW(10)O(36)Al(2)(μ-OH)(2)(μ-OH)}(3)] (1; TBA = tetra-n-butylammonium) and TBA(6)Li(3)[{γ-H(2)SiW(10)O(36)Al(2)(μ-OH)(2)(μ-OH)}(3)]·18H(2)O (2), were synthesized by trimerization of a dialuminum-substituted silicotungstate monomer. Both 1 and 2 possessed a layered structure composed of a basal sheet unit [TBA(3){γ-H(2)SiW(10)O(36)Al(2)(μ-OH)(2)(μ-OH)}(3)](6-) and interlayer cations. The interconversion between 1 and 2 reversibly took place through interlayer cation exchange.  相似文献   

3.
The di- and tetranuclear metal sandwich-type silicotungstates of Cs10[(gamma-SiW10O36)2{Zr(H2O)}2(mu-OH)2] x 18 H2O (Zr2, monoclinic, C2/c (No. 15), a = 25.3315(8) A, b = 22.6699(7) A, c = 18.5533(6) A, beta = 123.9000(12) degrees, V = 8843.3(5) A(3), Z = 4), Cs10[(gamma-SiW10O36)2{Hf(H2O)}2(mu-OH)2] x 17 H2O (Hf2, monoclinic, space group C2/c (No. 15), a = 25.3847(16) A, b = 22.6121(14) A, c = 18.8703(11) A, beta = 124.046(3) degrees, V = 8974.9(9) A(3), Z = 4), Cs8[(gamma-SiW10O36)2{Zr(H2O)}4(mu4-O)(mu-OH)6] x 26 H2O (Zr4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.67370(10) A, c = 61.6213(8) A, V = 9897.78(17) A(3), Z = 4), and Cs8[(gamma-SiW10O36)2{Hf(H2O)}4(mu4-O)(mu-OH)6] x 23 H2O (Hf4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.68130(10) A, c = 61.5483(9) A, V = 9897.91(18) A(3), Z = 4) were obtained as single crystals suitable for X-ray crystallographic analyses by the reaction of a dilacunary gamma-Keggin silicotungstate K8[gamma-SiW10O36] with ZrOCl2 x 8 H2O or HfOCl2 x 8 H2O. These dimeric polyoxometalates consisted of two [gamma-SiW10O36](8-) units sandwiching metal-oxygen clusters such as [M2(mu-OH)2](6+) and [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). The dinuclear zirconium and hafnium complexes Zr2 and Hf2 were isostructural. The equatorially placed two metal atoms in Zr2 and Hf2 were linked by two mu-OH ligands and each metal was bound to four oxygen atoms of two [gamma-SiW10O36](8-) units. The tertanuclear zirconium and hafnium complexes Zr4 and Hf4 were isostructural and consisted of the adamantanoid cages with a tetracoordinated oxygen atom in the middle, [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). Each metal atom in Zr4 and Hf4 was linked by three mu-OH ligands and bound to two oxygen atoms of the [gamma-SiW10O36](8-) unit. The tetra-nuclear zirconium and hafnium complexes showed catalytic activity for the intramolecular cyclization of (+)-citronellal to isopulegols without formation of byproducts resulting from etherification and dehydration. A lacunary silicotungstate [gamma-SiW10O34(H2O)2](4-) was inactive, and the isomer ratio of isopulegols in the presence of MOCl2 x 8 H2O (M = Zr or Hf) were much different from that in the presence of tetranuclear complexes, suggesting that the [M4(mu4-O)(mu-OH)6](8+) core incorporated into the POM frameworks acts as an active site for the present cyclization. On the other hand, the reaction hardly proceeded in the presence of dinuclear zirconium and hafnium complexes under the same conditions. The much less activity is possibly explained by the steric repulsion from the POM frameworks in the dinuclear complexes.  相似文献   

4.
A novel titanium-substituted silicotungstate cluster of [{gamma-SiTi2W10O36(OH)2}2(mu-O)2]8- (1) is synthesized by the introduction of titanium(IV) ions into a divacant lacunary gamma-Keggin-type silicotungstate of [gamma-SiW10O36]8-. This titanium-substituted polyoxometalate, 1, exhibits a dimeric structure. One half of the gamma-Keggin fragment of 1 contains a dinuclear titanium center bridged by two hydroxo groups, and the resulting Ti2(mu-OH)2 core connects to the other Ti2(mu-OH)2 core of the paired gamma-Keggin subunit through Ti-O-Ti linkages. The Ti2(mu-OH)2 core of 1 reacts with MeOH to form the corresponding alkoxo derivative, [{gamma-SiTi2W10O36(OH)(OMe)}2(mu-O)2]8- (2). Two of four hydroxo groups of the Ti2(mu-OH)2 cores in 1 are replaced by methoxo groups to give the Ti2(mu-OH)(mu-OMe) core, and the Ti-O-Ti linkages connecting two gamma-Keggin subunits are maintained in 2. The gamma-Keggin dititanium-substituted silicotungstate 1 catalyzes mono-oxygenation reactions, such as the epoxidation of olefins and sulfoxidation of sulfides with hydrogen peroxide under mild conditions, while the monotitanium-substituted silicotungstate, [alpha-SiTiW11O39]4- (3), and the fully occupied silicododecatungstate, [gamma-SiW12O40]4-, are inactive. The epoxidation with 1 is stereospecific; the configurations around the C=C double bonds of the cis- and trans-olefins are completely retained in the corresponding epoxides. For the competitive epoxidation of cis- and trans-2-octenes, the ratio of the formation rate of cis-2,3-epoxyoctane to that of the trans isomer (R(cis)/R(trans)) is relatively high (21.3) in comparison with those observed for the tungstate catalysts, including [gamma-SiW10O34(H2O)2]4-. The epoxidation of 3-methyl-1-cyclohexene is highly diastereoselective and gives the corresponding epoxide with an anti configuration. The molecular structure of 1 is preserved during the catalysis because the 29Si and 183W NMR spectra of the catalyst recovered after completion of the oxidation are consistent with those of as-prepared compound 1. All these facts suggest the contribution of rigid nonradical oxidants generated on the multinuclear titanium center of 1.  相似文献   

5.
The tetra-n-butylammonium (TBA) salt of the divacant Keggin-type polyoxometalate [TBA](4)[gamma-SiW(10)O(34)(H(2)O)(2)] (I) catalyzes the oxygen-transfer reactions of olefins, allylic alcohols, and sulfides with 30 % aqueous hydrogen peroxide. The negative Hammett rho(+) (-0.99) for the competitive oxidation of p-substituted styrenes and the low value of (nucleophilic oxidation)/(total oxidation), X(SO)=0.04, for I-catalyzed oxidation of thianthrene 5-oxide (SSO) reveals that a strongly electrophilic oxidant species is formed on I. The preferential formation of trans-epoxide during epoxidation of 3-methyl-1-cyclohexene demonstrates the steric constraints of the active site of I. The I-catalyzed epoxidation proceeds with an induction period that disappears upon treatment of I with hydrogen peroxide. (29)Si and (183)W NMR spectroscopy and CSI mass spectrometry show that reaction of I with excess hydrogen peroxide leads to fast formation of a diperoxo species, [TBA](4)[gamma-SiW(10)O(32)(O(2))(2)] (II), with retention of a gamma-Keggin type structure. Whereas the isolated compound II is inactive for stoichiometric epoxidation of cyclooctene, epoxidation with II does proceed in the presence of hydrogen peroxide. The reaction of II with hydrogen peroxide would form a reactive species (III), and this step corresponds to the induction period observed in the catalytic epoxidation. The steric and electronic characters of III are the same as those for the catalytic epoxidation by I. Kinetic, spectroscopic, and mechanistic investigations show that the present epoxidation proceeds via III.  相似文献   

6.
This paper describes the development of green, efficient H(2)O(2)-based epoxidation systems with three kinds of polyoxometalates: (i) a dinuclear peroxotungstate [W(2)O(3)(O(2))(4)(H(2)O)(2)](2-) (I), (ii) a divacant lacunary polyoxotungstate [gamma-SiW(10)O(34)(H(2)O)(2)]4 (II), (iii) and a divanadium-substituted polyoxotungstate [gamma-1,2-H(2)SiV(2)W(10)O(40)](4-) (III). The highly chemo-, regio-, and diastereoselective epoxidation of various allylic alcohols with only 1 equiv H(2)O(2) in water can be efficiently catalyzed by potassium salt of I (K-I). The catalyst K-I can be recycled with the retention of the catalytic performance. Protonation of a divacant lacunary polyoxotungstate [gamma-SiW(10)O(36)](8-) gives [gamma-SiW(10)O(34)(H(2)O)(2)](4-) (II) with two aquo ligands. The tetra-n-butylammonium salt of II (TBA-II) catalyzes epoxidation of common olefins including propylene with >or=99% selectivity to epoxide and >or=99% efficiency of H(2)O(2) utilization. The bis(mu-hydroxo)bridged dioxovanadium site in [gamma-1,2-H(2)SiV(2)W(10)O(40)](4-) (III) can also efficiently catalyze epoxidation of a variety of olefins with 1 equiv H(2)O(2). Notably, the system with III shows unique stereospecificity, diastereoselectivity, and regioselectivity for the epoxidation of cis/trans olefins, 3-substituted cyclohexenes, and nonconjugated dienes, respectively, which are quite different from those reported for epoxidation systems up to now. Furthermore, the heterogenization of the mentioned polyoxometalates can be achieved by using ionic liquid-modified SiO(2) as a support without loss of catalytic performance.  相似文献   

7.
Three discrete cobalt-substituted silicotungstates, [Co3(H2O)(B-beta-SiW9O34)(B-beta-SiW8O29(OH)2)]12- (1), [Co3(H2O)(B-alpha-SiW9O34)(B-beta-SiW8O31)]14- (2), and [Co9Cl2(OH)3(H2O)9(B-beta-SiW8O31)3]17- (3), have been synthesized using a synthetic approach involving Co(II) ions, the dilacunary [gamma-SiW10O36]8- polyanion and a bulky organic cation in basic media; all three compounds have been fully characterized and their position as structural intermediates in Co-containing silicotungstate chemistry is described.  相似文献   

8.
The new, monometal substituted silicotungstates [Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (1), [Co(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (2) and [Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (3) have been synthesized and isolated as the potassium salts K(10)[Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-1), K(10)[Co(H(2)O0(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-2) and K(10)[Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 13.5 H(2)O (K-3), which have been characterized by IR spectroscopy, single crystal X-ray diffraction, elemental analysis and cyclic voltammetry. Polyanions 1-3 are composed of two (gamma-SiW(10)O(36)) units fused on one side via two W-O-W' bridges and on the other side by an octahedrally coordinated trans-MO(4)(OH(2))(2) transition metal fragment, resulting in a structure with C(2v) point group symmetry. Anions 1-3 were synthesized by reaction of the dilacunary precursor [gamma-SiW(10)O(36)](8-) with Mn(2+), Co(2+) and Ni(2+) ions, respectively, in 1 M KCl solution at pH 4.5. The electrochemical properties of 1-3 were studied by cyclic voltammetry and controlled potential coulometry in a pH 5 buffer medium. The waves associated with the W-centers are compared with each other and with those of the parent lacunary precursor [gamma-SiW(10)O(36)](8-) in the same medium. They appear to be dominated by the acid-base properties of the intermediate reduced species. A facile merging of the waves for 3 is observed while those for 1 and 2 remain split. Controlled potential coulometry of the single wave of 3 or the combined waves of 1 and 2 is accompanied by catalysis of the hydrogen evolution reaction. No redox activity was detected for the Ni(2+) center in 3, whereas the Co(2+) center in 2 shows a one-electron redox process. The two-electron, chemically reversible process of the Mn(2+) center in 1 is accompanied by a film deposition on the electrode surface.  相似文献   

9.
Four coordination networks based on the {ε-PMo(V)(8)Mo(VI)(4)O(40)(OH)(4)Zn(4)} Keggin unit (εZn) have been synthesized under hydrothermal conditions. (TBA)(3){PMo(V)(8)Mo(VI)(4)O(36)(OH)(4)Zn(4)}[C(6)H(4)(COO)(2)](2) (ε(isop)(2)) is a 2D material with monomeric εZn units connected via 1,3 benzenedicarboxylate (isop) linkers and tetrabutylammonium (TBA) counter-cations lying between the planes. In (TPA)(3){PMo(V)(8)Mo(VI)(4)O(37)(OH)(3)Zn(4)}[C(6)H(3)(COO)(3)] (TPA[ε(trim)](∞)), 1D inorganic chains formed by the connection of εZn POMs, via Zn-O bonds, are linked via 1,3,5 benzenetricarboxylate (trim) ligands into a 2D compound with tetrapropylammonium (TPA) cations as counter-cations. (TBA){PMo(V)(8)Mo(VI)(4)O(40)Zn(4)}(C(7)H(4)N(2))(2)(C(7)H(5)N(2))(2)·12H(2)O (ε(bim)(4)) is a molecular material with monomeric εZn POMs bound to terminal benzimidazole (bim) ligands. Finally, (TBA)(C(10)H(10)N(4))(2)(HPO(3)){PMo(V)(8)Mo(VI)(4)O(40)Zn(4)}(2)(C(10)H(9)N(4))(3)(C(10)H(8)N(4)) (ε(2)(pazo)(4)) is a 1D compound with dimeric (εZn)(2) POMs connected by HPO(3)(2-) ions and terminal para-azobipyridine (pazo) ligands. In this compound an unusual bond cleavage of the central N[double bond, length as m-dash]N bond of the pazo ligand is observed. We report also a green chemistry-type one-step synthesis method carried out in water at room temperature using ε(2)(pazo)(4) and ε(isop)(2) as reducing agent of graphite oxide (GO) to obtain graphene (G). The POM@G hybrids were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, powder X-ray diffraction, energy dispersive X-ray analysis, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and cyclic voltammetry.  相似文献   

10.
A new structurally distinct dimeric silicotungstate K9Na,Cu0.5[gamma-Cu2(H2O)SiWO31]2.38H2O (1) has been synthesized and characterized by infrared spectroscopy, elemental analysis, and variable-temperature magnetic measurements. Blue needle-like crystals of 1 were obtained by reaction of K8[gamma-SiW10O36] with 2 equivalents of Cu(n) in a 0.5 M sodium acetate solution (pH 4.2) and subsequent addition of an equal volume of ethylene glycol. The structure of 1 was determined by single-crystal X-ray diffraction: final R1 = 3.41% based on 9709 independent reflections. The structure consists of two [gamma-Cu2(H2O)SiWsO3,1]6- Keggin-like units with the [Cu2O(H2O)(micro3-O)(micro2-O)] moiety of one unit bonded to the top of a [W2O6] moiety of the other unit. Magnetic susceptibility measurements indicate competing ferro- and antiferromagnetic intramolecular coupling between the four S = 1/2 Cu(II) centers in the cluster anion.  相似文献   

11.
The condensation reaction of resorcinol with cis-[ClP(μ-N(t)Bu)(2)PN(H)(t)Bu] produced a difunctional derivative 1,3-C(6)H(4)[OP(μ-N(t)Bu)(2)PN(H)(t)Bu](2) (1), whereas the similar reaction with [ClP(μ-N(t)Bu)](2) resulted in the formation of a 1:1 mixture of dimeric and tetrameric species, [{P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (2a) and [{P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](4) (2b), which were separated by repeated fractional crystallization and column chromatography. The reaction of dimer 2a with H(2)O(2) and selenium produces tetrachalcogenides [{(O)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (3) and [{(Se)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (4), respectively. The reaction between the dimer (2a) and [Pd(μ-Cl)(η(3)-C(3)H(5))](2) or AuCl(SMe(2)) yielded the corresponding tetranuclear complexes, [{((Cl)(η(3)-C(3)H(5))Pd)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (5) and [{(ClAu)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (6) in good yield. The complexes 5 and 6 are the rare examples of phosphorus macrocycles containing two or more exocyclic transition metal fragments. Treatment of 1 with copper halides in 1:1 molar ratio resulted in the formation of one-dimensional (1D) coordination polymers, [(CuX){1,3-C(6)H(4){OP(μ-N(t)Bu)(2)PN(H)(t)Bu}}(2)](n) (7, X = Cl; 8, X = Br; 9, X = I), which showed the helical structure in solid state because of intramolecular hydrogen bonding, whereas similar reactions of 1 with 4 equiv of copper halides also produced 1D-coordination polymers, [(Cu(2)X(2))(2){1,3-C(6)H(4){OP(μ-N(t)Bu)(2)PN(H)(t)Bu}(2)}](n) (10, X = Cl; 11, X = Br; 12, X = I), but containing Cu(2)X(2) rhomboids instead of CuX linkers. The crystal structures of 1, 2a, 2b, 4, 7-9, and 12 were established by X-ray diffraction studies.  相似文献   

12.
Xin F  Pope MT 《Inorganic chemistry》1996,35(19):5693-5695
A new phenyltin tungstosilicate derivative, [(PhSnOH(2))(2)(gamma-SiW(10)O(36))(2)](10)(-) (1), has been prepared by reaction of phenyltin trichloride with K(8)[gamma-SiW(10)O(36)].xH(2)O. The new heteropolyanion was characterized by elemental analysis, infrared spectroscopy, multinuclear NMR, and X-ray crystallography. The crystals of Cs(9)H[(PhSnOH(2))(2)(gamma-SiW(10)O(36))(2)].16H(2)O (Cs salt of 1) are triclinic, space group P&onemacr;, with lattice constants a = 12.401(3) ?, b = 13.832(3) ?, c = 16.313(3) ?, alpha = 96.17(2) degrees, beta = 109.73(2) degrees, gamma = 97.13(2) degrees, V = 2579.9(10) ?, and Z = 1. Anion 1 has a structure of virtual C(2)(h)() symmetry with two phenyltin groups sandwiched between two gamma-SiW(10) groups. Such a structure is different from all previously reported polytungstates derived from [gamma-SiW(10)O(36)](8)(-) lacunary anions.  相似文献   

13.
The reaction of ScCl(3)(THF)(3) or YCl(3) in a 1:1 molar ratio under reflux for 8 h with [{Li(bdmpza)(H(2)O)}(4)] [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], [{Li(bdmpzdta)(H(2)O)}(4)] [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], and (Hbdmpze) [bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] affords the corresponding complexes [MCl(2)(kappa(3)-bdmpzx)(THF)] (x = a, M = Sc (1), Y (2); x = dta, M = Sc (3), Y (4); x = e, M = Sc (5), Y (6)). However, when the reaction was carried out for 1 h under reflux between ScCl(3)(THF)(3) and [{Li(bdmpzdta)(H(2)O)}(4)], a new anionic complex [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) was obtained. Reaction of [{Li(bdmpza)(H(2)O)}(4)] with YCl(3) in a 2:1 molar ratio under reflux for 8 h gave the complex [YCl(kappa(3)-bdmpza)(2)] (8). The same reaction, but with the lithium compound [{Li(bdmpzdta)(H(2)O)}(4)], led to the formation of an anionic complex [Li(THF)(4)][YCl(3)(kappa(3)-bdmpzdta)] (9). The X-ray crystal structures of 7 and 9 were established. Finally, the addition of 1 equiv of [{Li(bdmpza)(H(2)O)}(4)] or [{Li(bdmpzdta)(H(2)O)}(4)] to a solution of YCl(3) in THF under reflux, followed by the addition of 1 equiv of 1,10-phenanthroline, resulted in the formation of the corresponding complexes [YCl(2)(kappa(3)-bdmpzx)(phen)] (x = a (10), x = dta (11)). These complexes are the first examples of group 3 metals stabilized by heteroscorpionate ligands. In addition, we have explored the reactivity of some of these complexes with alcohols and amides. For example, the direct reaction of [YCl(2)(kappa(3)-bdmpza)(THF)] (2) with several alcohols gave the alkoxide complexes [YCl(kappa(3)-bdmpza)(OR)] (R = Et (12), iPr (13)). Finally, the reaction between [ScCl(2)(kappa(3)-bdmpzdta)(THF)] (3) or [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) and LiN(SiMe(3))(2).Et(2)O in 1:1 and 1:2 molar ratios gave rise to the complexes [ScCl(kappa(3)-bdmpzdta){N(SiMe(3))(2)}] (14) and [Sc(kappa(3)-bdmpzdta){N(SiMe(3))(2)}(2)] (15), respectively.  相似文献   

14.
Treatment of the bmnpa (N,N-bis-2-(methylthio)ethyl-N-((6-neopentylamino-2-pyridyl)methyl)amine) ligand with equimolar amounts of Cd(ClO(4))(2).5H(2)O and Me(4)NOH.5H(2)O in CH(3)CN yielded the binuclear cadmium hydroxide complex [((bmnpa)Cd)(2)(mu-OH)(2)](ClO(4))(2).CH(3)CN (1). Complex 1 may also be prepared (a) by treatment of a CH(3)CN solution of (bmnpa)Cd(ClO(4))(2) (2) with 1 equiv of n-BuLi, followed by treatment with water or (b) from 2 in the presence of 1 equiv each of water and NEt(3). The hydroxide derivative 1 is not produced from 2 and water in the absence of an added base. Complex 1 possesses a binuclear structure in the solid state with hydrogen-bonding and CH/pi interactions involving the bmnpa ligand. The overall structural features of 1 differ from the halide derivative [((bmnpa)Cd)(2)(mu-Cl)(2)](ClO(4))(2) (3), particularly in that the Cd(2)(mu-OH)(2) core of 1 is symmetric whereas the Cd(2)(mu-Cl)(2) core of 3 is asymmetric. In acetonitrile solution, 1 behaves as a 1:2 electrolyte and retains a binuclear structure and secondary hydrogen-bonding and CH/pi interactions, whereas 3 is a 1:1 electrolyte, indicating formation of a mononuclear [(bmnpa)CdCl]ClO(4) species in solution. Treatment of 1 with CO(2) in anhydrous CH(3)CN yields the bridging carbonate complex [((bmnpa)Cd)(2)(mu-CO(3))](ClO(4))(2).CH(3)CN (4). Treatment of a chemically similar zinc hydroxide complex, [((benpa)Zn)(2)(mu-OH)(2)](ClO(4))(2) (benpa = N,N-bis-2-(ethylthio)ethyl-N-((6-neopentylamino-2-pyridyl)methyl)amine, with CO(2) also results in the formation of a carbonate derivative, [((benpa)Zn)(2)(mu-CO(3))](ClO(4))(2) (5), albeit the coordination mode of the bridging carbonate moiety is different. Treatment of 4 with added water results in no reaction, whereas 5 under identical conditions will undergo reaction to yield the zinc hydroxide complex [((benpa)Zn)(2)(mu-OH)(2)](ClO(4))(2).  相似文献   

15.
The reaction of the lanthanide salts LnI3(thf)4 and Ln(OTf)3 with tris(2-pyridylmethyl)amine (tpa) was studied in rigorously anhydrous conditions and in the presence of water. Under rigorously anhydrous conditions the successive formation of mono- and bis(tpa) complexes was observed on addition of 1 and 2 equiv of ligand, respectively. Addition of a third ligand equivalent did not yield additional complexes. The mono(tpa) complex [Ce(tpa)I3] (1) and the bis(tpa) complexes [Ln(tpa)2]X3 (X = I, Ln = La(III) (2), Ln = Ce(III) (3), Ln = Nd(III) (4), Ln = Lu(III) (5); X = OTf, Ln = Eu(III) (6)) were isolated under rigorously anhydrous conditions and their solid-state and solution structures determined. In the presence of water, 1H NMR spectroscopy and ES-MS show that the successive addition of 1-3 equiv of tpa to triflate or iodide salts of the lanthanides results in the formation of mono(tpa) aqua complexes followed by formation of protonated tpa and hydroxo complexes. The solid-state structures of the complexes [Eu(tpa)(H2O)2(OTf)3] (7), [Eu(tpa)(mu-OH)(OTf)2]2 (8), and [Ce(tpa)(mu-OH)(MeCN)(H2O)]2I4 (9) have been determined. The reaction of the bis(tpa) lanthanide complexes with stoichiometric amounts of water yields a facile synthetic route to a family of discrete dimeric hydroxide-bridged lanthanide complexes prepared in a controlled manner. The suggested mechanism for this reaction involves the displacement of one tpa ligand by two water molecules to form the mono(tpa) complex, which subsequently reacts with the noncoordinated tpa to form the dimeric hydroxo species.  相似文献   

16.
Five Co(II) silicotungstate complexes are reported. The centrosymmetric heptanuclear compound K(20)[{(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)}(2)Co(H(2)O)(2)]47 H(2)O (1) consists of two {(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)} units connected by a {CoO(4)(H(2)O)(2)} group. In the chiral species K(7)[Co(1.5)(H(2)O)(7))][(gamma-SiW(10)O(36))(beta-SiW(8)O(30)(OH))Co(4)(OH)(H(2)O)(7)]36 H(2)O (2), a {gamma-SiW(10)O(36)} and a {beta-SiW(8)O(30)(OH)} unit enclose a mononuclear {CoO(4)(H(2)O)(2)} group and a {Co(3)O(7)(OH)(H(2)O)(5)} fragment. The two trinuclear Co(II) clusters present in 1 enclose a mu(4)-O atom, while in 2 a mu(3)-OH bridging group connects the three paramagnetic centers of the trinuclear unit, inducing significantly larger Co-L-Co (L=mu(4)-O (1), mu(3)-OH (2)) bridging angles in 2 (theta(av(Co-L-Co))=99.1 degrees ) than in 1 (theta(av(Co-L-Co))=92.8 degrees ). Weaker ferromagnetic interactions were found in 2 than in 1, in agreement with larger Co-L-Co angles in 2. The electrochemistry of 1 was studied in detail. The two chemically reversible redox couples observed in the positive potential domain were attributed to the redox processes of Co(II) centers, and indicated that two types of Co(II) centers in the structure were oxidized in separate waves. Redox activity of the seventh Co(II) center was not detected. Preliminary experiments indicated that 1 catalyzes the reduction of nitrite and NO. Remarkably, a reversible interaction exists with NO or related species. The hybrid tetranuclear complexes K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(3)(CH(3)COO)(3)]18 H(2)O (3) and K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(N(3))(2)(CH(3)COO)(3)]18 H(2)O (4) were characterized: in both, a tetrahedral {Co(4)(L(1))(L(2))(2)(CH(3)COO)(3)} (3: L(1)=L(2)=OH; 4: L(1)=OH, L(2)=N(3)) unit capped the [A-alpha-SiW(9)O(34)](10-) trivacant polyanion. The octanuclear complex K(8)Na(8)[(A-alpha-SiW(9)O(34))(2)Co(8)(OH)(6)(H(2)O)(2)(CO(3))(3)]52 H(2)O (5), containing two {Co(4)O(9)(OH)(3)(H(2)O)} units, was also obtained. Compounds 2, 3, 4, and 5 were less stable than 1, but their partial electrochemical characterization was possible; the electronic effect expected for 3 and 4 was observed.  相似文献   

17.
Indanones and 2-cyclopentenones have been successfully prepared in good to excellent yields by the palladium-catalyzed carbonylative cyclization of unsaturated aryl iodides and dienyl triflates, iodides, and bromides, respectively. The best results are obtained by employing 10 mol % of Pd(OAc)(2), 2 equiv of pyridine, 1 equiv of n-Bu(4)NCl, 1 atm of CO, a reaction temperature of 100 degrees C, and DMF as the solvent. This carbonylative cyclization is particularly effective on substrates that contain a terminal olefin. The proposed mechanism for this annulation includes (1) Pd(OAc)(2) reduction to the active palladium(0) catalyst, (2) oxidative addition of the organic halide or triflate to Pd(0), (3) coordination and insertion of carbon monoxide to produce an acylpalladium intermediate, (4) acylpalladation of the neighboring carbon-carbon double bond, (5) reversible palladium beta-hydride elimination and re-addition to form a palladium enolate, and (6) protonation by H(2)O to produce the indanone or 2-cyclopentenone.  相似文献   

18.
The complex [gamma(1,2)-SiW(10){Fe(OH(2))}(2)O(38)](6)(-) (1) has been reported to catalyze the much sought reductant-free selective O(2)-based epoxidation of alkenes (Nishiyama, Y.; Nakagawa, Y.; Mizuno, N. Angew. Chem. Int. Ed. 2001, 40, 3639-3641) in chlorocarbon-acetonitrile solution. The challenge of reproducing catalysis by 1 led us to examine this chemistry in detail. In H(2)O, a desirable solvent for catalysis, 1, does not exist in the proposed organic-medium form in which the two iron atoms are in the binding pocket defined by the equatorial oxygens and, importantly, by two oxygens bound to the central Si heteroatom. Instead, 1 in H(2)O initially forms an unusual trimer [{Fe(2)(OH)(3)(H(2)O)(2)}(3)(gamma-SiW(10)O(36))(3)](15)(-) (2). The X-ray structure of 2 shows that the Fe-O(Si) bonds are cleaved and new bonds (mu-hydroxo bridges) form between these Fe centers and those of the neighboring [gamma(1,2)-SiW(10)Fe(2)] units. Structural, physical, and computational evidence indicate that if the bonds between the d-electron center, M (Fe in the case of 1 and 2), and the terminal ligands on M are stronger than the M-O(x)() bonds, then the out-of-pocket form is more stable and is the one observed. Significantly, 2 in H(2)O forms an intermediate that catalyzes the effective aerobic oxidation of sulfur compounds (mercaptoethanol is oxidized to the corresponding disulfide by O(2) at ambient pressure and temperature). All experimental findings are consistent with dissociation of a gamma-SiW(10) Keggin unit from the trimer, 2, to form the catalytically active species.  相似文献   

19.
The syntheses, characterisation and complexation reactions of a series of binucleating Schiff-base calixpyrrole macrocycles are described. The acid-templated [2+2] condensations between meso-disubstituted diformyldipyrromethanes and o-phenylenediamines generate the Schiff-base pyrrolic macrocycles H(4)L(1) to H(4)L(6) upon basic workup. The single-crystal X-ray structures of both H(4)L(3).2 EtOH and H(4)L(6).H2O confirm that [2+2] cyclisation has occurred, with either EtOH or H2O hydrogen-bonded within the macrocyclic cleft. A series of complexation reactions generate the dipalladium [Pd2(L)] (L=L(1) to L(5)), dinickel [Ni2(L(1))] and dicopper [Cu2(L)] (L=L(1) to L(3)) complexes. All of these complexes have been structurally characterised in the solid state and are found to adopt wedged structures that are enforced by the rigidity of the aryl backbone to give a cleft reminiscent of the structures of Pacman porphyrins. The binuclear nickel complexes [Ni2(mu-OMe)2Cl2(HOMe)2(H(4)L(1))] and [Ni2(mu-OH)2Cl2(HOMe)(H(4)L(5))] have also been prepared, although in these cases the solid-state structures show that the macrocyclic ligand remains protonated at the pyrrolic nitrogen atoms, and the Ni(II) cations are therefore co-ordinated by the imine nitrogen atoms only to give an open conformation for the complex. The dicopper complex [Cu2(L(3))] was crystallised in the presence of pyridine to form the adduct [Cu2(py)(L(3))], in which, in the solid state, the pyridine ligand is bound within the binuclear molecular cleft. Reaction between H(4)L(1) and [Mn(thf){N(SiMe(3))2}2] results in clean formation of the dimanganese complex [Mn2(L(1))], which, upon crystallisation, formed the mixed-valent complex [Mn2(mu-OH)(L(1))] in which the hydroxo ligand bridges the metal centres within the molecular cleft.  相似文献   

20.
The di-Co(2+) complex, [Co(2+)(mu-OH)(oxapyme)Co(2+)(H(2)O)](+), contains an unsymmetrical binucleating ligand (oxapyme) which provides five- and six-coordinate metal sites when a hydroxide bridge is introduced. This complex absorbs 1 equiv of O(2) irreversibly in solution, producing an unstable di-Co(3+) oxygenated product. The oxygenated product has been studied at low temperatures, where its electronic absorption and (1)H NMR spectra were recorded. It is probable that the oxygenation reaction involves a one-site addition two-metal oxidation reaction to produce an end-on-bonded peroxide ligand at the available coordination site, giving the complex [Co(3+)(mu-OH)(oxapyme)Co(3+)(mu(1)-O(2))](+). Addition of 1 equiv of HClO(4) to this oxygenation product gives a stable peroxide complex, [Co(3+)(mu,eta(1):eta(2)-O(2))(oxapyme)Co(3+)](2+), where one of the oxygen atoms bridges the two metals and is sideways bonded to one of the metals. The formation of this stable complex involves expulsion of the OH(-) bridge. Addition of NO(2)(-) to the sideways-bonded peroxide complex leads to the formation of another stable complex, [Co(3+)(mu,eta(1):eta(1)-O(2))(oxapyme)Co(3+)(NO(2))](+), where the peroxide forms a classic di-end-on bridge to the two metals. Both of these complexes have been fully characterized. Addition of acid to this second stable dioxygen complex leads to the release of HNO(2) and the formation of the mu,eta(1):eta(2) sideways-bonded peroxide complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号