首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of deposit on the membrane surface (fouling) is one of the major operating problems of membrane distillation process. The influence of fouling on the performance of this process was investigated during the concentration of wastewater with proteins, bilge water, brines, and the production of demineralized water. The experiments were performed with polypropylene capillary membranes. The morphology and composition of the fouling layer were studied using Fourier transform infrared with diffuse reflectance spectroscopy and scanning electron microscopy coupled with the energy dispersing spectrometry. Fouling with various intensity was observed in most of the studied cases. Permeate flux decline was mainly caused by an increase in the heat resistance of the fouling layer. However in the case of non-porous deposit, a magnitude of the permeate flux was also determined by a resistance of water transport through the deposit layer. It was found the deposits were formed not only on the membrane surface, but also inside the pores. Salt crystallization in the membrane pores besides their wetting, also caused the mechanical damage of the membrane structure. The intensity of the fouling can be limited by the pretreatment of feed and a selection of the operating conditions of membrane distillation.  相似文献   

2.
Two kinds of polypropylene capillary membranes were used in the membrane distillation (MD). These membranes exhibited a similar morphology, but one of them has an additional low porosity layer on the internal surface of capillaries. The changes of membrane performance during MD process of tap water were investigated. The presence of low porosity layer (thickness below 1 μm) caused that the air permeability was reduced from 1.365 to 0.863 dm3/m2 s kPa, whereas the MD permeate flux was decreased only by 15%. A significantly larger decline of the flux was caused by CaCO3 deposit formed during distillation of tap water. This deposit was removed every 30–70 h by rinsing the modules with a 2–5 wt.% HCl. Unfortunately, a repetition of this operation several times resulted in a gradual decline of the maximum permeate flux (distilled water as a feed). However, the module efficiency with the membranes covered by a surface layer of low porosity was found to decreases twice as slowly. The investigations revealed that a low surface porosity does not limit the possibility of surface wetting of polypropylene membranes, but hindered the scale formation inside the pores.  相似文献   

3.
A theoretical approach is presented that describes membrane distillation processes due to the simultaneous action (in a proactive or in a counteractive way) of temperature and concentration differences through porous hydrophobic membranes. The model developed emphasizes the importance of the boundary layers, shows the existence of a coupling term between the two thermodynamic forces acting on the system, and permits the definition and characterization of the so-called steady states. In order to check the model, two membranes have been studied in different experimental conditions. The influence of some relevant parameters, such as solution concentration, stirring rate, mean temperature and temperature difference has been considered and the theoretical predictions of the model have been applied to the obtained results. The accordance may be considered good.  相似文献   

4.
The effects of temperature on the stability of a soil humic acid were studied in the present work. Solid samples of Gohy-573 humic acid (HA) and dissolved ones in aqueous solution (pH 6.0, 0.1 mol L−1 NaClO4) were investigated in order to understand the impact of temperature on the chemical properties of the material. The methods applied to solid samples in the present investigation were thermogravimetric analysis (TGA), temperature-programmed desorption coupled with mass spectrometry (TPD-MS), and in situ diffuse reflectance infrared Fourier transformed spectroscopy (in situ DRIFTS). Humic acid samples were studied in the 25-800 °C range, with focus on thermal/chemical processes up to 250 °C. The reversibility of the changes observed was investigated by cyclic changes to specified temperature ranges (40-110 °C). All measurements were conducted under inert-gas atmosphere in order to avoid samples combustion at increased temperatures. Aqueous solutions were analyzed by UV-vis absorption spectroscopy after storage at temperatures up to 95 °C, and storage times up to 1 week. For temperatures below 100 °C experiments on solid and aqueous samples have shown results which were consistent to each other. The amount of water desorbed is temperature dependent and up to 70 °C this process was totally reversible. Above 70 °C an irreversible loss of water was also observed, which according to UV-vis spectroscopy corresponds to water produced by condensation leading to more condensed polyaromatic structures. The water released up to 110 °C was about 7 wt% of the total mass of the dried humic acid, where less than 50% corresponded to reversibly adsorbed water. At higher temperatures (>110 °C), gradual decomposition resulting in the formation of carbon dioxide (110-240 °C), and carbon monoxide (140-240 °C) takes place. Hence, thermal treatment of Gohy-573 humic acid above 70 °C results in irreversible structural changes, that could affect chemical properties (e.g., complex formation) of the material.  相似文献   

5.
Bulk and measured temperatures in direct contact membrane distillation   总被引:3,自引:0,他引:3  
The aim of this work is the development of a transport model for a direct contact membrane distillation process in laminar flow that allows knowing the velocity and temperature profiles within the flow channels as a function of externally measured temperatures just at the entrances and exits of the flow channels in the membrane module. The second aim is to apply this model to a conventional membrane module, and so calculate the difference between the bulk temperatures and the externally measured ones. For the system studied here, moderately important differences between both temperatures have been obtained when working at low flow rates and high temperatures. It can be concluded from the trends observed in this study that an estimation of this temperature difference has to be made before considering the bulk temperature as equal to the externally measured temperature, above all, in those systems where the thermal boundary layers represent an important portion of the flow channels height, and important temperature drops exist through them.  相似文献   

6.
This study aims at investigating the kinetics of calcium carbonate precipitation (scaling), that occurs in the form of vaterite, when treating seawater by direct contact membrane distillation (DCMD) operated at high concentration factors (from 4 to 6). Induction time measurements carried out by dynamic light scattering (DLS) allowed to identify the shifting between homogeneous and heterogeneous nucleation mechanisms as a function of supersaturation. CaCO3 interfacial energy, evaluated for concentrated seawater solutions as 45 mJ/m2, increased by 7% as a consequence of the inhibition effect of humic acid, and it was reduced to 32 mJ/m2 in correspondence of heterogeneous nucleation occurring on microporous polypropylene membranes. Gibbs free energy barrier to the formation of critical nuclei was predicted with good accuracy as a function of physico-chemical properties of the membrane (porosity: 0.70, contact angle: 115 ± 2°).  相似文献   

7.
This study applies direct contact membrane distillation (DCMD) to concentrating the extract of traditional Chinese medicine (TCM). The trans-membrane flux under various operation conditions was measured in real-time during concentration process. By decoupling the factors affecting the trans-membrane flux decline, it was found that the observed flux decline throughout the process could be attributed to the membrane fouling, the reduction of water vapor pressure and the increase of transport resistance at feed side. Analysis of the combined factors was given to show in detail the mechanism of flux decline. Factors that may affect the flux level, such as feed velocity, feed temperature and pretreatment were experimentally examined. Gas bubbling or sparging was introduced into DCMD system for reducing membrane fouling, and it was found that both gas–liquid two-phase flow at the feed side and gas back-washing within membrane module are effective ways to control membrane fouling.  相似文献   

8.
Porous Vycor membrane tubes were used in shell-and-tube type membrane reactors to study the effect on the oxidative coupling of methane of metering the oxygen into the catalyst bed. Experimental studies showed that under conditions of complete oxygen conversion, Vycor membrane reactors packed with Sm2O3 catalyst exhibited enhanced hydrocarbon (C2) selectivity. C2 yields were comparable to those of the conventional co-feed packed bed reactors operated under the same conditions. The higher C2 selectivity in the membrane reactors indicated that, for methane coupling, regulating the supply of oxygen along the length of the packed bed may be beneficial to C2 formation.  相似文献   

9.
In the membrane distillation process only gaseous phase can exist in the membrane pores. The resistance to wettability of capillary polypropylene membranes has been investigated in this work. The SEM-EDS investigations revealed that the pores located up to 100 μm from the membrane surface were filled by the feed during the production of demineralized water over a period of 4500 h. However, the pores located inside the membrane wall were still dry and no feed leakage was observed. Both scaling and polypropylene degradation were indicated as the major reason for partial membrane wettability. The SEM-EDS, XRD and FTIR methods were used for investigations of polypropylene degradation, and material cracking and the presence of hydroxyl and carbonyl groups on the membrane surface has been identified. The membranes irradiated by UV light or stored up to 9 years in air were used to evaluate the membrane wetting caused by the products of polymer oxidation. The membrane samples were soaked in either water or a concentrated solution of NaCl at temperature of 343 K, and their wettability was evaluated on the basis of their variations in the air permeability. It was found that the products of polypropylene oxidation significantly accelerated the degree of wettability during the first 30 days of investigations, but after 60 days the results were similar. The soaked membrane samples wetted faster in NaCl solutions than those soaked in distilled water, which came as a result of the chemical reactions of salt with the hydroxyl and carbonyl groups found on the polypropylene surface.  相似文献   

10.
A serious problem faced during the application of membrane filtration in water treatment is membrane fouling by natural organic matter (NOM). The hydrophilicity, zeta potential and morphology of membrane surface mainly influence membrane fouling. The aim of the present study is to reveal the correlation between membrane surface morphology and membrane fouling by use of humic acid solution and to investigate the efficiency of backwashing by water, which is applied to restore membrane flux. Cellulose acetate butyrate (CAB) hollow fiber membranes were used in the present study. To obtain the membranes with various surface structures, membranes were prepared via both thermally induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) by changing the preparation conditions such as polymer concentration, air gap distance and coagulation bath composition. Since the membrane material is the same, the effects of hydrophilicity and zeta potential on membrane fouling can be ignored. More significant flux decline was observed in the membrane with lower humic acid rejection. For the membranes with similar water permeability, the lower the porosity at the outer surface, the more serious the membrane fouling. Furthermore, the effect of the membrane morphology on backwashing performance was discussed.  相似文献   

11.
李书音  曹再植  于妍  朱腾义 《化学通报》2021,84(9):906-912,936
膜蒸馏是一种以膜为介质,利用传统蒸发工艺开发的新型膜分离技术。随着高分子材料行业的进步和制膜工艺的成熟,膜蒸馏技术取得了巨大的进展,在水处理领域拥有十分广阔的市场前景。膜蒸馏技术的核心是膜的通量和使用寿命,而性能优良的膜材料是膜蒸馏技术发展的关键。聚偏氟乙烯(PVDF)因具有成膜性能好、表面张力大、化学稳定性强等优点,在膜蒸馏技术应用研究中备受青睐。同时PVDF与其他聚合物具有良好的相容性,为膜的改性研究奠定了基础,极大地扩展了应用范围。本文介绍了膜蒸馏技术的工作原理及工艺特点以及PVDF膜材料的特点及改性方法,重点对PVDF膜蒸馏技术在水处理领域的应用进行了梳理和总结,讨论了该技术亟待研究和解决的问题,以期为该工艺技术的进一步发展提供科学支撑和理论依据。  相似文献   

12.
Abstract

Membrane contactors represent an emerging technology in which the membrane is used as a tool for inter phase mass transfer operations: the membrane does not act as a selective barrier, but the separation is based on the phase equilibrium. In principle, all traditional stripping, scrubbing, absorption, evaporation, distillation, crystallization, emulsification, liquid‐liquid extraction, and mass transfer catalysis processes can be carried out according to this configuration. This review, specifically addressed to membrane distillation (MD), osmotic distillation (OD), and membrane crystallization (MCr), illustrates the fundamental concepts related to heat and mass transport phenomena through microporous membranes, appropriate membrane properties, and module design criteria. The most significant applications of these novel membrane operations, concerning pure/fresh water production, wastewater treatment, concentration of agro food solutions, and concentration/crystallization of organic and biological solutions, are also presented and discussed.  相似文献   

13.
This work has evaluated the influence of humic acid and/or surfactants in the quantification of ammonium in waters with the indophenol-type reaction method. Thymol has been employed with the colorimetric method for sample ammonium concentrations between 0.25 and 1 mg L−1. In addition, SPE/diffuse reflectance method has been used for quantification of ammonium at low concentrations (between 0.025 and 0.25 mg L−1). Matrix effect owing to humic substances were observed with the colorimetric method when the concentration was equal or higher than 25 mg L−1. Lower concentrations of humic compounds produced matrix effects with the more sensitive SPE/diffuse reflectance method. Generalized H-point standard addition method (GHPSAM) was employed for evaluating the effect of humic acids and for eliminating the bias error produced by humic acids. Real water samples of different types were analyzed and accurate results for ammonium concentration were obtained with both procedures in presence or absence of humic acids. Cationic and anionic surfactants inhibited the derivatization reaction at percentages up to 0.001% and 0.5%, respectively, and non-ionic surfactants at percentages of 5.5%  相似文献   

14.
The ability of chitosan to form complexes with bivalent metal ions has been broadly explored in the literature. The present work investigates the influence of functionalization of macroporous chitosan membranes with histidine on their ability to remove copper ions from aqueous solution in the range of pH 4–6. The maximum adsorption capacity for Cu(II) ion was 2.5 mmol metal/g pristine chitosan membranes. Under this condition, no influence of membrane porosity was observed. However, for membranes with immobilized histidine, the porosity was shown to be a factor that affects the maximum adsorption capacity, with values ranging from 2.0 to 3.0 mmol metal/g chitosan. These results indicate that the immobilization of histidine on porous chitosan membranes presents synergy with porosity in the ability to complex Cu(II) ions. This synergy may be negative or positive, depending on the initial membrane porosity.  相似文献   

15.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes were obtained by surface-coated modification method.  相似文献   

16.
A new mesoporous organosilica material (beta-CD-Silica-4%) containing microporous beta-cyclodextrins (beta-CDs) has been prepared by the co-polymerization of a silylated beta-CD monomer with tetraethoxysilane in the presence of a structure-directing template, cetyltrimethylammonium bromide. Solid-state 13C and 29Si NMR studies provided evidence for the presence of covalently attached beta-CDs in the mesoporous material. Nitrogen adsorption experiments showed that beta-CD-Silica-4% material had a BET surface area of 460 m2/g and an average mesopore diameter of 2.52 nm. Small-angle powder X-ray diffraction pattern of beta-CD-Silica-4% material revealed the lack of highly ordered mesoporous structure. Adsorption experiments showed that beta-CD-Silica-4% material removed up to 99% of humic acid from an aqueous solution containing 50 ppm of humic acid at a solution-to-solid ratio of 100 ml/g.  相似文献   

17.
Historically, high performance anaerobic wastewater treatment processes have been developed by maximizing the retention of microorganisms either by fixing them on porous material or by favoring the growth of easy-settling microbial granules. While numerous studies have been directed towards the comprehension of the various processes involved in the fixation of microor-ganisms or the formation of microbial granules, much less work has been devoted to the improvement of solid-liquid separation techniques. the recent development of a new generation of ultra-filtration membranes more productive and less expensive has however prompted the emergence of a new concept in the wastewater treatment technology: the membrane bioreactor.  相似文献   

18.
Ultrafiltration fractionation and liquid chromatography have been applied to study the binding and hydrolysis of polar herbicide atrazine on a stoichiometrically well characterized Laurentian humic acid. The main advantage of this method over gas chromatography is the simultaneous determination of both free and bound atrazine, hydroxyatrazine and copper(II) ion with satisfactory accuracy and precision. Atrazine binding requires extensive carboxylate site protonation but the binding sites represent only a very small fraction of total carboxylate of humic acid. The results show that binding of atrazine is not competitive with binding of the hydrolysis product hydroxyatrazine, the binding capacity is reduced at higher ionic strength or by cation competition for carboxylate and the atrazine binding constant and free energy of binding can be fitted by a single value at all pH values. The differences between atrazine binding by fulvic acid and humic acid can be ascribed to the structure difference, one being a flexible linear polymer and the other a three-dimensional colloidal gel particle.  相似文献   

19.
Nature of flow on sweeping gas membrane distillation   总被引:5,自引:0,他引:5  
The process of sweeping gas membrane distillation (SGMD), with the liquid feed and the sweeping gas counterflowing in a plate and frame membrane module, has been studied. A theoretical model, which was presented in a previous paper and permitted to obtain the temperature profiles inside the fluid phases, has been developed in order to analyse the physical nature of the transmembrane water flux. Two porous hydrophobic membranes have been studied in different experimental conditions. The influence of some relevant parameters, such as the inlet and outlet temperatures or the circulation velocities of the fluids, has been studied. The experimental results have been analysed according to the model and the conclusion is that the water transport takes place, apparently, via a combined Knudsen and molecular diffusive flow mechanism. From the temperature profiles, a local temperature polarisation coefficient may be defined. From this local value, an overall one for the whole system is then defined. The new theoretical predictions have been applied to the obtained results and the accordance may be considered good.  相似文献   

20.
Conventionally treated oil refinery wastewaters still contain about 20 mg/l total hydrocarbons and 30 mg/l suspended solids sloughed from a biological reactor and the temperature is about 35°C. The new European standards will require less than 5 mg/l hydrocarbons and less than 10 mg/l suspended solids. Such standards could be met by an ultrafiltration operation. The M9 Carbosep membrane was selected after this inorganic membrane proved to be a total barrier for the hydrocarbons of a synthetic emulsion made with an Iranian crude oil while giving a high water flux. A systematic study of the influence of the different operational parameters was then effected with a mixed suspension containing hydrocarbons and biological solids sampled from an activated sludge plant. Aggregation processes of hydrocarbons on the bacterial flocs were observed leading to larger particles with an optimal hydrocarbons/biological solids ratio. This induces a significant flux increase up to 150 l/h m2. Progressive fouling can be limited by use of helical baffles introduced in the filtration element operated at 0.5 bar. Experimental data were fitted to a model of cake deposition with retroflux while the steady state results were recalculated in terms of two dimensionless quantities whose experimental values are linearly correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号