首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we study both charged and uncharged particles tunneling across the horizon of spherically symmetric dilaton–axion black holes using Parikh–Wilczek tunneling formalism. Such black hole solutions have much significance in string theory based models. For different choices of the dilaton and axion couplings with the electromagnetic field, we show that the tunneling probability depends on the difference between initial and final entropies of the black hole. Our results, which agree with similar results obtained for other classes of black holes, further confirm the usefulness of Parikh–Wilczek formalism to understand Hawking radiation. The emission spectrum is shown to agree with a purely thermal spectrum only in the leading order. The modification of the proportionality factor in the area–entropy relation in the Bekenstein–Hawking formula has been determined.  相似文献   

2.
We present a short and direct derivation of Hawking radiation as a tunneling process, based on particles in a dynamical geometry. The imaginary part of the action for the classically forbidden process is related to the Boltzmann factor for emission at the Hawking temperature. Because the derivation respects conservation laws, the exact spectrum is not precisely thermal. We compare and contrast the problem of spontaneous emission of charged particles from a charged conductor.  相似文献   

3.
We consider particle production by charged and rotating black holes. A simple derivation is presented for the leading term (n=1) in the Schwinger formula for pair creation by a constant electric field. The same approach is then applied to charged-particle production by a charged black hole. The effect is due to the tunneling of created particles through an effective Dirac gap. Nonthermal radiation from a rotating black hole can also be explained in an analogous way. In the leading semiclassical approximation, this approach is applicable to bosons as well.  相似文献   

4.
In this paper, we derive the deformed Hamilton-Jacobi equations from the generalized Klein-Gordon equation and generalized Dirac equation. Then, we study the tunneling rate, Hawking temperature and entropy of the higher-dimensional Reissner-Nordström de Sitter black hole via the deformed Hamilton-Jacobi equation. Our results show that the deformed Hamilton-Jacobi equations for charged scalar particles and charged fermions have the same expressions. Besides, the modified Hawking temperatures and entropy are related to the mass and charge of the black hole, the cosmology constant, the quantum number of emitted particles, and the term of GUP effects β.  相似文献   

5.
Hawking radiation from a black hole can be viewed as quantum tunneling of particles through the event horizon. Using this approach we provide a general framework for studying corrections to the entropy of black holes beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics, we study charged rotating black holes and explicitly work out the corrections to entropy and horizon area for the Kerr–Newman and charged rotating BTZ black holes. It is shown that the results for other geometries like the Schwarzschild, Reissner-Nordström and anti-de Sitter–Schwarzschild spacetimes follow easily.  相似文献   

6.
We study Hawking radiation of charged fermions as a tunneling process from charged regular black holes, i.e., the Bardeen and ABGB black holes. For this purpose, we apply the semiclassical WKB approximation to the general covariant Dirac equation for charged particles and evaluate the tunneling probabilities. We recover the Hawking temperature corresponding to these charged regular black holes. Further, we consider the back-reaction effects of the emitted spin particles from black holes and calculate their corresponding quantum corrections to the radiation spectrum. We find that this radiation spectrum is not purely thermal due to the energy and charge conservation but has some corrections. In the absence of charge, e = 0, our results are consistent with those already present in the literature.  相似文献   

7.
周亮  张靖仪 《物理学报》2010,59(6):4380-4384
运用Parikh-Wilczek的半经典量子隧穿法,计算了带电带磁粒子穿过黑洞视界时的量子隧穿辐射谱.以带有时空拓扑缺陷的双荷Reissner-Nordstrǒm黑洞为例进行研究,计算结果表明带电带磁粒子的出射过程满足么正性原理,支持Parikh-Wilczek的结论,出射谱不再是纯热谱. 关键词: 黑洞 Hawking辐射 量子理论  相似文献   

8.
Hawking radiation viewed as a semi-classical tunneling process of charged particles from the event horizon of the Garfinkle–Horne dilaton black hole is investigated by taking into account not only energy conservation but also electric charge conservation. Our results show that when the effect of the emitted massive charged particle's self-gravitation is incorporated, the tunneling rate is related to the change of the black hole's Bekenstein–Hawking entropy and the emission spectrum deviates from the purely thermal spectrum.  相似文献   

9.
G. Jannes 《JETP Letters》2011,94(1):18-21
We use the tunneling formalism to calculate the Hawking radiation of massive particles. For Em, we recover the traditional result, identical to the massless case. But E < m particles can also tunnel across the horizon in a Hawking process. We study the probability for detecting such E < m particles as a function of the distance from the horizon and the energy of the particle in the tunneling formalism. We derive a general formula and obtain simple approximations in the near-horizon limit and in the limit of large radii.  相似文献   

10.
Black hole radiation of gravitinos is investigated as the classically forbidden tunneling of spin-3/2 fermions through an event horizon. We calculate directly that all four spin states of the gravitino yield the same emission temperature, and the Unruh temperature in a Rindler spacetime as well as the Hawking temperature for a Kerr–Newman charged rotating black hole are retrieved. This confirms the robustness of the tunneling formalism in a wide range of applications.  相似文献   

11.
Tunneling of charged and magnetized Dirac particles from the Kerr-Newman-Ads black hole with magnetic charges is discussed in this paper. Owing to the electric and magnetic fields would couple with gravity field, we introduce the Dirac equation of charged and magnetized particles. Then by redefining the equivalent charge and gauge potential corresponding to the source with electric and magnetic charges, we discuss this tunneling once and obtain the same Hawking temperature. Both results show that the fermions tunneling formalism also come into existence in the charged and magnetized background space time.  相似文献   

12.
Hawking's analysis of particle creation by black holes is extended by explicitly obtaining the expression for the quantum mechanical state vector ψ which results from particle creation starting from the vacuum during gravitational collapse. (Hawking calculated only the expected number of particles in each mode for this state.) We first discuss the quantum field theory of a Hermitian scalar field in an external potential or in a curved but asymptotically flat spacetime with no horizon present. In agreement with previously known results, we find that we are led to a unique quantum scattering theory which is completely well behaved mathematically provided a certain condition is satisfied by the operators which describe the scattering of classical positive frequency solutions. In terms of these operators we derive the expression for the state vector describing particle creation from the vacuum, and we prove that S-matrix is unitary. Making the necessary modification for the case when a horizon is present, we apply this theory for a massless Hermitian scalar field to get the state vector describing the steady state emission at late times for particle creation during gravitational collapse to a Schwarzschild black hole. There is some ambiguity in the theory in this case arising from freedom involved in defining what one means by “positive frequency” at the future event horizon. However, it is proven that the expression for the density matrix formed from ψ describing the emission of particles to infinity is independent of this choice, and thus unambiguous predictions for the results of all possible measurements at infinity are obtained. We find that the state vector describing particle creation from the vacuum decomposes into a simple product of state vectors for each individual mode. The density matrix describing emission of particles to infinity by this particle creation process is found to be identical to that of black body emission. Thus, black hole emission agrees in complete detail (i.e., not only in expected number of particles) with black body emission.  相似文献   

13.
Applying Parikh’s semi-classical tunneling method, Hawking radiation of charged massive particles via tunneling from charged spherical black hole in vacuum for Vector Graviton Metric theory (VGM) of gravitation is investigated. Because the derivation respects conservation of energy and charge, the tunneling rate of particles is relevant to the change of Bekenstein-Hawking entropy and the exact spectrum is not precisely thermal. The result employs an underlying unitary theory. PACS numbers: 04.70.-s, 97.60. Lf  相似文献   

14.
We apply the generalization of the Parikh–Wilczek method to the tunneling of massive particles from noncommutative inspired Schwarzschild black holes. By deriving the equation of radial motion of the tunneling particle directly, we calculate the emission rate which is shown to be dependent on the noncommutative parameter besides the energy and mass of the tunneling particle. After equating the emission rate to the Boltzmann factor, we obtain the modified Hawking temperature which relates to the noncommutativity and recovers the standard Hawking temperature in the commutative limit. We also discuss the entropy of the noncommutative inspired Schwarzschild black hole and its difference after and before a massive particle’s emission.  相似文献   

15.
A quantum mechanical picture, relating accelerated geodesic deviation to creation of massive particles via quantum tunneling in curved background spacetimes, is presented. The effect is analogous to pair production by an electric field and leads naturally to production of massive particles in de Sitter and superluminal FRW spacetimes. The probability of particle production in de Sitter space per unit volume and time is computed in a leading semiclassical approximation and shown to coincide with the previously obtained expression.  相似文献   

16.
The primary objective in this work is to study the corrected entropy law for charged and rotating black strings in asymptotically anti-de Sitter spacetime. By employing, the Hamilton-Jacobi approach, fermions tunneling beyond semiclassical approximation is investigated. The correction has been done by taking the proportionality parameters of quantum correction of action I i to the semiclassical action I 0 as 2π times the inverse of the black string horizon area. Moreover, with the aid of corrected Hawking temperature we finally compute the corrected area law, which includes the logarithmic term and inverse area terms.  相似文献   

17.
Hawking temperature of a static and spherically symmetric black hole beyond semiclassical approximation is studied. The calculations show us that different definition of the particle’s energy gives different Hawking temperature. However, we argue that the result obtained using the standard definition of the particle energy is reasonable because it keeps the validity of the first law of the thermodynamics, i.e., both the Hawking temperature and entropy are not modified by the quantum tunneling beyond semiclassical approximation. The result shows us that any hypothetical (h/2p){\hbar} corrections to the tunneling rate are to be interpreted not as quantum corrections to the Hawking temperature but as fluctuations about a thermal background.  相似文献   

18.
Based on the Hamilton-Jacobi method beyond the semiclassical approximation proposed by R. Baberjee and B.R. Majhi, Hawking radiation of Dirac particle as tunneling through the event horizon is calculated. It is shown that all quantum corrections in the fermion particle action are proportional to the usual semiclassical contribution. Under the conception of irreducible mass and the first law of thermodynamics, the modifications to Hawking temperature and Bekenstein-Hawking entropy are given for a Kerr-Newmann black hole.  相似文献   

19.
We consider the static and spherically symmetric field equations of general relativity for charged perfect fluid spheres in the presence of a cosmological constant. Following work by Florides (J Phys A Math Gen 16:1419–1433, 1983) we find new exact solutions of the field equations, and discuss their mass radius ratios. These solutions, for instance, require the charged Nariai metric to be the vacuum part of the spacetime. We also find charged generalizations of the Einstein static universe and speculate that the smallness problem of the cosmological constant might become less problematic if charge is taken into account.  相似文献   

20.
The Banerjee-Majhi's recent work shows that the Hawking radiation and entropy/area quantum of the black hole horizon (EH) can be well described in the tunneling picture. In this paper, we develop this idea to the case of a de Sitter tunneling from the cosmological horizon (CH), and obtain the Hawking emission spectrum and entropy/area spectroscopy from the CH of the purely de Sitter black hole as well as the Schwarzschild-de Sitter black hole. It is interestingly found that the area of the CH is quantized by Δ A=4lpl2, as was given by Hod for the area quantum of -the EH by considering the Heisenberg uncertainty principle and Schwinger-type emission process. Also, we conclude from our derivation that the entropy/area quantum of the CH is universal in the sense that it is independent of the black hole parameters. This realization implies that, (at least) at a semiclassical level, the de Sitter gravity shares the similar quantum behavior as the usual gravity without presence of a cosmological constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号