首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under relatively general particle and rocket frame motions, it is shown that, for special relativity, the basic concepts can be formulated and the basic properties deduced using only arithmetic. Particular attention is directed toward velocity, acceleration, proper time, momentum, energy, and 4-vectors in both space-time and Minkowski space, and to relativistic generalizations of Newton's second law. The resulting mathematical simplification is not only completely compatible with modern computer technology, but it yields dynamical equations that can be solved directly by such computers. Particular applications of the numerical equations, which are either Lorentz invariant or are directly related to Lorentz-invariant formulas, are made to the study of a relativistic harmonic oscillator and to the motion of an electric particle in a magnetic field.  相似文献   

2.
The action for a massive particle in special relativity can be expressed as the invariant proper length between the end points. In principle, one should be able to construct the quantum theory for such a system by the path integral approach using this action. On the other hand, it is well known that the dynamics of a free, relativistic, spinless massive particle is best described by a scalar field which is equivalent to an infinite number of harmonic oscillators. We clarify the connection between these two—apparently dissimilar—approaches by obtaining the Green function for the system of oscillators from that of the relativistic particle. This is achieved through defining the path integral for a relativistic particle rigorously by two separate approaches. This analysis also shows a connection between square root Lagrangians and the system of harmonic oscillators which is likely to be of value in more general context.  相似文献   

3.
Classical generators of one-dimensional reparametrization, and higher dimensional diffeomorphism symmetries are displayed for the relativistic free particle, relativistic particles in interaction, and general relativity in both Lagrangian and Hamiltonian frameworks. Projectability of these symmetries under the Legendre map is achieved only with dynamical variable-dependent transformations. When gauge symmetries are included, as in Einstein-Yang-Mills and a new reparametrization covariant pre-Maxwell model, pure coordinate symmetries are not projectable. They must be accompanied by internal gauge transformations.  相似文献   

4.
We emphasize that the pressure related work appearing in a general relativistic first law of thermodynamics should involve proper volume element rather than coordinate volume element. This point is highlighted by considering both local energy momentum conservation equation as well as particle number conservation equation. It is also emphasized that we are considering here a non-singular fluid governed by purely classical general relativity. Therefore, we are not considering here any semi-classical or quantum gravity which apparently suggests thermodynamical properties even for a (singular) black hole. Having made such a clarification, we formulate a global first law of thermodynamics for an adiabatically evolving spherical perfect fluid. It may be verified that such a global first law of thermodynamics, for a non-singular fluid, has not been formulated earlier.  相似文献   

5.
In a previous paper a stochastic foundation was proposed for microphysics: the nonrelativistic and relativistic domains were shown to be connected with two different approximations of diffusion theory; the relativistic features (Lorentz contraction for the coordinate standard deviation, covariant diffusion equation) were not derived from the relativistic formalism introduced at the start, but emerged from diffusion theory itself. In the present paper these results are given a new presentation, which aims at elucidating not the foundations of quantum mechanics, but those of relativity. This leads to a discussion of points still controversial in the interpretation of relativity. In particular two problems appear in a new light: the character of time and length alterations, and the privileged role of the velocityc. Besides, the question of a possible limitation of relativity (and more generally of the laws of mechanics) in the domain of particle substructure is raised and supported by exemples drawn from the hydrodynamical model of a spinned particle. Suggestions are presented for the possibility of a deeper conceptual unification of special and general relativity.  相似文献   

6.
We consider the relativistic Vlasov-Maxwell and Vlasov-Nordström systems which describe large particle ensembles interacting by either electromagnetic fields or a relativistic scalar gravity model. For both systems we derive a radiation formula analogous to the Einstein quadrupole formula in general relativity.Supported in parts by DFG priority research program SPP 1095  相似文献   

7.
The covariance group for general relativity, the diffeomorphisms, is replaced by a group of coordinate transformations which contains the diffeomorphisms as a proper subgroup. The larger group is defined by the assumption that all observers will agree whether any given quantity is conserved. Alternatively, and equivalently, it is defined by the assumption that all observers will agree that the general relativistic wave equation describes the propagation of light. Thus, the group replacement is analogous to the replacement of the Lorentz group by the diffeomorphisms that led Einstein from special relativity to general relativity, and is also consistent with the assumption of constant light velocity that led him to special relativity. The enlarged covariance group leads to a non-commutative geometry based not on a manifold, but on a nonlocal space in which paths, rather than points, are the most primitive invariant entities. This yields a theory which unifies the gravitational and electroweak interactions. The theory contains no adjustable parameters, such as those that are chosen arbitrarily in the standard model.  相似文献   

8.
文章首先将史瓦西黑洞场中自由下落质点的固有时(诺维科夫坐标时)公式,由自然单位制化成了国际单位制中的形式.然后,根据牛顿第二定律和万有引力定律,推导出了自由下落质点经历的绝对时间公式,进而证明了广义相对论中自由落体经历的固有时,恰好等于牛顿力学给出的绝对时间.最后,对自由下落质点在黑洞内外经历的时间进行了特例计算.  相似文献   

9.
The gedanken experiment of the clock paradox is solved exactly using the general relativistic equations for a static homogeneous gravitational field. We demonstrate that the general and special relativistic clock paradox solutions are identical and in particular that they are identical for finite acceleration. Practical expressions are obtained for proper time and coordinate time by using the destination distance as the key observable parameter. This solution provides a formal demonstration of the identity between the special and general relativistic clock paradox with finite acceleration and where proper time is assumed to be the same in both formalisms. By solving the equations of motion for a freely falling clock in a static homogeneous field elapsed times are calculated for realistic journeys to the stars. 1 Both authors contributed equally to this paper.  相似文献   

10.
11.
To relax the apparent tension between nonlocal hidden variables and relativity, we propose that the observable proper time is not the same quantity as the usual proper-time parameter appearing in local relativistic equations. Instead, the two proper times are related by a nonlocal rescaling parameter proportional to |ψ|2, so that they coincide in the classical limit. In this way particle trajectories may obey local relativistic equations of motion in a manner consistent with the appearance of nonlocal quantum correlations. To illustrate the main idea, we first present two simple toy models of local particle trajectories with nonlocal time, which reproduce some nonlocal quantum phenomena. After that, we present a realistic theory with a capacity to reproduce all predictions of quantum theory.  相似文献   

12.
In the case of weak fields, we compare the gravitational fields and the dynamical equation of a particle deduced from special relativistic gravitational theory with the corresponding results deduced from general relativity. Then both gravitational theories can be tested by experiments.  相似文献   

13.
Abstract

We report on a new formulation of classical relativistic Hamiltonian mechanics which is based on a proper-time implementation of special relativity using a transformation from observer proper-time, which is not invariant, to system proper-time which is a canonical contact transformation on extended phase-space. This approach does not require the use of time as a fourth coordinate and so we prove that it satisfies the two postulates of special relativity. In the free particle case, our transformation theory generates a Poincaré group which fixes time (system proper-time). We prove that the Fushchych-Shtelen transformation is an element of our group, which fixes time for Maxwell’s equations. In the interaction case, our transformation theory allows us to avoid the no-interaction theorem. We show that the Santilli Isotopes appear naturally when interaction is turned on.  相似文献   

14.
A well-known relativistic action at a distance interaction of two unequal masses is altered so as to yield purely Newtonian radial forces with fixed particle rest masses in the system center-of-momentum inertial frame. Although particle masses experience no kinematic mass increase in this frame, speeds are naturally restricted to less than the speed of light. We derive a relation between the center-of-momentum frame total Newtonian energy and the composite rest mass. In a new proper time quantum formalism, we obtain an L2(R4 R4, C) Hilbert space by varying individual particle rest masses. We propose the use of density operators, recognizing that the auxiliary proper time parameter is not an observable. The quantum formalism is applied to our altered version of the relativistic harmonic oscillator. Our generalized coherent states yield four-dimensional wave packets which follow the correct classical world lines. Appendices contain reviews of classical Hamiltonian reparametrization (incorporating our notion of manifest covariance), and a comparison of this work with the literature.  相似文献   

15.
The retainability of canonical distributions for a Brownian particle controlled by a time-dependent harmonic potential is investigated in the overdamped and underdamped situations, respectively. Because of different time scales, the overdamped and underdamped Langevin equations (as well as the corresponding Fokker-Planck equations) lead to distinctive restrictions on protocols maintaining canonical distributions. Two special cases are analyzed in details: First, a Brownian particle is controlled by a time-dependent harmonic potential and embedded in medium with constant temperature; Second, a Brownian particle is controlled by a timedependent harmonic potential and embedded in a medium whose temperature is tuned together with the potential stiffness to keep a constant effective temperature of the Brownian particle. We find that the canonical distributions are usually retainable for both the overdamped and underdamped situations in the former case. However, the canonical distributions are retainable merely for the overdamped situation in the latter case. We also investigate general time-dependent potentials beyond the harmonic form and find that the retainability of canonical distributions depends sensitively on the specific form of potentials.  相似文献   

16.
The general relativistic (Mercury-type) periastron advance is calculated here for the first time with exquisite precision in full general relativity. We use accurate numerical relativity simulations of spinless black-hole binaries with mass ratios 1/8≤m(1)/m(2)≤1 and compare with the predictions of several analytic approximation schemes. We find the effective-one-body model to be remarkably accurate and, surprisingly, so also the predictions of self-force theory [replacing m(1)/m(2)→m(1)m(2)/(m(1)+m(2))(2)]. Our results can inform a universal analytic model of the two-body dynamics, crucial for ongoing and future gravitational-wave searches.  相似文献   

17.
Generalized billiards describe nonequilibrium gas, consisting of finitely many particles, that move in a container, whose walls heat up or cool down. Generalized billiards can be considered both in the framework of the Newtonian mechanics and of the relativity theory. In the Newtonian case, a generalized billiard may possess an invariant measure; the Gibbs entropy with respect to this measure is constant. On the contrary, generalized relativistic billiards are always dissipative,and the Gibbs entropy with respect to the same measure grows under some natural conditions. In this article, we find the necessary and sufficient conditions for a generalized Newtonian billiard to possess a smooth invariant measure, which is independent of the boundary action: the corresponding classical billiard should have an additional first integral of special type. In particular,the generalized Sinai billiards do not possess a smooth invariant measure. We then consider generalized billiards inside a ball, which is one of the main examples of the Newtonian generalized billiards which does have an invariant measure. We construct explicitly the invariant measure, and find the conditions for the Gibbs entropy growth for the corresponding relativistic billiard both formonotone and periodic action of the boundary.  相似文献   

18.
The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily involves the violation of hypotheses required for a proper definition of the Lyapunov exponents.  相似文献   

19.
In 1975 Møller tried to show that the general relativistic concept of standard time or proper time would lose its physical meaning in the vicinity of singularities of a gravitational field [1]. His treatment of a classical harmonic oscillator clock falling into a singularity is checked in the present paper and is found to be insufficient to prove the above statement. A relativistic clock model is given to ensure the reasonable physical meaning of proper time.  相似文献   

20.
Laws of mechanics, quantum mechanics, electromagnetism, gravitation and relativity are derived as “related mathematical identities” based solely on the existence of a joint probability distribution for the position and velocity of a particle moving on a Riemannian manifold. This probability formalism is necessary because continuous variables are not precisely observable. These demonstrations explain why these laws must have the forms previously discovered through experiment and empirical deduction. Indeed, the very existence of electric, magnetic and gravitational fields is predicted by these purely mathematical constructions. Furthermore these constructions incorporate gravitation into special relativity theory and provide corrected definitions for coordinate time and proper time. These constructions then provide new insight into the relationship between manifold geometry and gravitation and present an alternative to Einstein’s general relativity theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号