首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an earlier paper, we studied manifolds M endowed with a generalized F structure \(\Phi \in \mathrm{End}(TM\oplus T^*M)\), skew-symmetric with respect to the pairing metric, such that \(\Phi ^3+\Phi =0\). Furthermore, if \(\Phi \) is integrable (in some well-defined sense), \(\Phi \) is a generalized CRF structure. In the present paper, we study quasi-classical generalized F and CRF structures, which may be seen as a generalization of the holomorphic Poisson structures (it is well known that the latter may also be defined via generalized geometry). The structures that we study are equivalent to a pair of tensor fields \((A\in \mathrm{End}(TM),\pi \in \wedge ^2TM)\), where \(A^3+A=0\) and some relations between A and \(\pi \) hold. We establish the integrability conditions in terms of \((A,\pi )\). They include the facts that A is a classical CRF structure, \(\pi \) is a Poisson bivector field and \(\mathrm{im}\,A\) is a (non)holonomic Poisson submanifold of \((M,\pi )\). We discuss the case where either \(\mathrm{ker}\,A\) or \(\mathrm{im}\,A\) is tangent to a foliation and, in particular, the case of almost contact manifolds. Finally, we show that the dual bundle of \(\mathrm{im}\,A\) inherits a Lie algebroid structure and we briefly discuss the Poisson cohomology of \(\pi \), including an associated spectral sequence and a Dolbeault type grading.  相似文献   

2.
Let \(\mathfrak {M}\) be a von Neumann algebra, and let \(\mathfrak {T}:\mathfrak {M} \rightarrow \mathfrak {M}\) be a bounded linear map satisfying \(\mathfrak {T}(P^{2}) = \mathfrak {T}(P)P + \Psi (P,P)\) for each projection P of \(\mathfrak {M}\), where \(\Psi :\mathfrak {M} \times \mathfrak {M} \rightarrow \mathfrak {M}\) is a bi-linear map. If \(\Psi \) is a bounded l-semi Hochschild 2-cocycle, then \(\mathfrak {T}\) is a left centralizer associated with \(\Psi \). By applying this conclusion, we offer a characterization of left \(\sigma \)-centralizers, generalized derivations and generalized \(\sigma \)-derivations on von Neumann algebras. Moreover, it is proved that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every bi-\(\sigma \)-derivation \(D:\mathfrak {M} \times \mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

3.
Let m be a positive integer \(\ge \)3 and \(\lambda =2\cos \frac{\pi }{m}\). The Hecke group \(\mathfrak {G}(\lambda )\) is generated by the fractional linear transformations \(\tau + \lambda \) and \(-\frac{1}{\tau }\) for \(\tau \) in the upper half plane \(\mathbb H\) of the complex plane \(\mathbb C\). We consider a set of functions \(\mathfrak {f}_0, \mathfrak {f}_i\) and \(\mathfrak {f}_{\infty }\) automorphic with respect to \(\mathfrak {G}(\lambda )\), constructed from the conformal mapping of the fundamental domain of \(\mathfrak {G}(\lambda )\) to the upper half plane \(\mathbb H\), and establish their connection with the Legendre functions and a class of hyper-elliptic functions. Many well-known classical identities associated with the cases of \(\lambda =1\) and 2 are preserved. As an application, we will establish a set of identities expressing the reciprocal of \(\pi \) in terms of the hypergeometric series.  相似文献   

4.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

5.
We consider in a group \((G,\cdot )\) the ternary relation
$$\begin{aligned} \kappa := \{(\alpha , \beta , \gamma ) \in G^3 \ | \ \alpha \cdot \beta ^{-1} \cdot \gamma = \gamma \cdot \beta ^{-1} \cdot \alpha \} \end{aligned}$$
and show that \(\kappa \) is a ternary equivalence relation if and only if the set \( \mathfrak Z \) of centralizers of the group G forms a fibration of G (cf. Theorems 2, 3). Therefore G can be provided with an incidence structure
$$\begin{aligned} \mathfrak G:= \{\gamma \cdot Z \ | \ \gamma \in G , Z \in \mathfrak Z(G) \}. \end{aligned}$$
We study the automorphism group of \((G,\kappa )\), i.e. all permutations \(\varphi \) of the set G such that \( (\alpha , \beta , \gamma ) \in \kappa \) implies \((\varphi (\alpha ),\varphi (\beta ),\varphi (\gamma ))\in \kappa \). We show \(\mathrm{Aut}(G,\kappa )=\mathrm{Aut}(G,\mathfrak G)\), \(\mathrm{Aut} (G,\cdot ) \subseteq \mathrm{Aut}(G,\kappa )\) and if \( \varphi \in \mathrm{Aut}(G,\kappa )\) with \(\varphi (1)=1\) and \(\varphi (\xi ^{-1})= (\varphi (\xi ))^{-1}\) for all \(\xi \in G\) then \(\varphi \) is an automorphism of \((G,\cdot )\). This allows us to prove a representation theorem of \(\mathrm{Aut}(G,\kappa )\) (cf. Theorem 6) and that for \(\alpha \in G \) the maps
$$\begin{aligned} \tilde{\alpha }\ : \ G \rightarrow G;~ \xi \mapsto \alpha \cdot \xi ^{-1} \cdot \alpha \end{aligned}$$
of the corresponding reflection structure \((G, \widetilde{G})\) (with \( \tilde{G} := \{\tilde{\gamma }\ | \ \gamma \in G \}\)) are point reflections. If \((G ,\cdot )\) is uniquely 2-divisible and if for \(\alpha \in G\), \(\alpha ^{1\over 2}\) denotes the unique solution of \(\xi ^2=\alpha \) then with \(\alpha \odot \beta := \alpha ^{1\over 2} \cdot \beta \cdot \alpha ^{1\over 2}\), the pair \((G,\odot )\) is a K-loop (cf. Theorem 5).
  相似文献   

6.
7.
Let \(\bar{p}(n)\) denote the number of overpartitions of \(n\). Recently, Fortin–Jacob–Mathieu and Hirschhorn–Sellers independently obtained 2-, 3- and 4-dissections of the generating function for \(\bar{p}(n)\) and derived a number of congruences for \(\bar{p}(n)\) modulo 4, 8 and 64 including \(\bar{p}(8n+7)\equiv 0 \pmod {64}\) for \(n\ge 0\). In this paper, we give a 16-dissection of the generating function for \(\bar{p}(n)\) modulo 16 and show that \(\bar{p}(16n+14)\equiv 0\pmod {16}\) for \(n\ge 0\). Moreover, using the \(2\)-adic expansion of the generating function for \(\bar{p}(n)\) according to Mahlburg, we obtain that \(\bar{p}(\ell ^2n+r\ell )\equiv 0\pmod {16}\), where \(n\ge 0\), \(\ell \equiv -1\pmod {8}\) is an odd prime and \(r\) is a positive integer with \(\ell \not \mid r\). In particular, for \(\ell =7\) and \(n\ge 0\), we get \(\bar{p}(49n+7)\equiv 0\pmod {16}\) and \(\bar{p}(49n+14)\equiv 0\pmod {16}\). We also find four congruence relations: \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n) \pmod {16}\) for \(n\ge 0\), \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {32}\) where \(n\) is not a square of an odd positive integer, \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {64}\) for \(n\not \equiv 1,2,5\pmod {8}\) and \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {128}\) for \(n\equiv 0\pmod {4}\).  相似文献   

8.
We deal with Morrey spaces on bounded domains \(\Omega \) obtained by different approaches. In particular, we consider three settings \(\mathcal {M}_{u,p}(\Omega )\), \(\mathbb {M}_{u,p}(\Omega )\) and \(\mathfrak {M}_{u,p}(\Omega )\), where \(0<p\le u<\infty \), commonly used in the literature, and study their connections and diversities. Moreover, we determine the growth envelopes \(\mathfrak {E}_{\mathsf {G}}(\mathcal {M}_{u,p}(\Omega ))\) as well as \(\mathfrak {E}_{\mathsf {G}}(\mathfrak {M}_{u,p}(\Omega ))\), and obtain some applications in terms of optimal embeddings. Surprisingly, it turns out that the interplay between p and u in the sense of whether \(\frac{n}{u}\ge \frac{1}{p}\) or \(\frac{n}{u} < \frac{1}{p}\) plays a decisive role when it comes to the behaviour of these spaces.  相似文献   

9.
Given a sequence of random functionals \(\bigl \{X_k(u)\bigr \}_{k \in \mathbb {Z}}\), \(u \in \mathbf{I}^d\), \(d \ge 1\), the normalized partial sums \(\check{S}_{nt}(u) = n^{-1/2}\bigl (X_1(u) + \cdots + X_{\lfloor n t \rfloor }(u)\bigr )\), \(t \in [0,1]\) and its polygonal version \({S}_{nt}(u)\) are considered under a weak dependence assumption and \(p > 2\) moments. Weak invariance principles in the space of continuous functions and càdlàg functions are established. A particular emphasis is put on the process \(\check{S}_{nt}(\widehat{\theta })\), where \(\widehat{\theta } \xrightarrow {\mathbb {P}} \theta \), and weaker moment conditions (\(p = 2\) if \(d = 1\)) are assumed.  相似文献   

10.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

11.
We show that every frame can be essentially embedded in a Boolean frame, and that this embedding is the maximal essential extension of the frame in the sense that it factors uniquely through any other essential extension. This extension can be realized as the embedding \(L \rightarrow \mathcal {N}(L) \rightarrow \mathcal {B}\mathcal {N}(L)\), where \(L \rightarrow \mathcal {N}(L)\) is the familiar embedding of L into its congruence frame \(\mathcal {N}(L)\), and \(\mathcal {N}(L) \rightarrow \mathcal {B}\mathcal {N}(L)\) is the Booleanization of \(\mathcal {N}(L)\). Finally, we show that for subfit frames the extension can also be realized as the embedding \(L \rightarrow {{\mathrm{S}}}_\mathfrak {c}(L)\) of L into its complete Boolean algebra \({{\mathrm{S}}}_\mathfrak {c}(L)\) of sublocales which are joins of closed sublocales.  相似文献   

12.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

13.
Let a sequence \(\Lambda \subset {\mathbb {C}}\) be such that the corresponding system of exponential functions \({\mathcal {E}}(\Lambda ):=\left\{ {\text {e}}^{i\lambda t}\right\} _{\lambda \in \Lambda }\) is complete and minimal in \(L^2(-\pi ,\pi )\), and thus each function \(f\in L^2(-\pi ,\pi )\) corresponds to a nonharmonic Fourier series in \({\mathcal {E}}(\Lambda )\). We prove that if the generating function \(G\) of \(\Lambda \) satisfies the Muckenhoupt \((A_2)\) condition on \({\mathbb {R}}\), then this series admits a linear summation method. Recent results show that the \((A_2)\) condition cannot be omitted.  相似文献   

14.
A decomposition of the blocks of an \(\textsf {STS}(v)\) into partial parallel classes of size m is equivalent to a Kirkman signal set \(\textsf {KSS}(v,m)\). We give decompositions of \(\textsf {STS}(4v-3)\) into classes of size \(v-1\) when \(v \equiv 3 \pmod {6}\), \(v \not = 3\). We also give decompositions of \(\textsf {STS}(v)\) into classes of various sizes when v is a product of two arbitrary integers that are both congruent to \(3 \pmod {6}\). These results produce new families of \(\textsf {KSS}(v,m)\).  相似文献   

15.
Let \(\mathfrak{g}\) be a complex semisimple Lie algebra, and \(Y_{\hbar }(\mathfrak{g})\), \(U_{q}(L\mathfrak{g})\) the corresponding Yangian and quantum loop algebra, with deformation parameters related by \(q=e^{\pi \iota \hbar }\). When \(\hbar \) is not a rational number, we constructed in Gautam and Toledano Laredo (J. Am. Math. Soc. 29:775, 2016) a faithful functor \(\Gamma \) from the category of finite-dimensional representations of \(Y_{\hbar }(\mathfrak{g})\) to those of \(U_{q}(L \mathfrak{g})\). The functor \(\Gamma \) is governed by the additive difference equations defined by the commuting fields of the Yangian, and restricts to an equivalence on a subcategory of \(\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar }(\mathfrak{g}))\) defined by choosing a branch of the logarithm. In this paper, we construct a tensor structure on \(\Gamma \) and show that, if \(|q|\neq 1\), it yields an equivalence of meromorphic braided tensor categories, when \(Y_{\hbar }(\mathfrak{g})\) and \(U_{q}(L\mathfrak{g})\) are endowed with the deformed Drinfeld coproducts and the commutative part of their universal \(R\)-matrices. This proves in particular the Kohno–Drinfeld theorem for the abelian \(q\)KZ equations defined by \(Y_{\hbar }(\mathfrak{g})\). The tensor structure arises from the abelian \(q\)KZ equations defined by an appropriate regularisation of the commutative part of the \(R\)-matrix of \(Y_{\hbar }(\mathfrak{g})\).  相似文献   

16.
Fix \(\delta \in (0,1]\), \(\sigma _0\in [0,1)\) and a real-valued function \(\varepsilon (x)\) for which \(\varlimsup _{x\rightarrow \infty }\varepsilon (x)\leqslant 0\). For every set of primes \(\mathcal {P}\) whose counting function \(\pi _\mathcal {P}(x)\) satisfies an estimate of the form
$$\begin{aligned} \pi _\mathcal {P}(x)=\delta \,\pi (x)+O\bigl (x^{\sigma _0+\varepsilon (x)}\bigr ), \end{aligned}$$
we define a zeta function \(\zeta _\mathcal {P}(s)\) that is closely related to the Riemann zeta function \(\zeta (s)\). For \(\sigma _0\leqslant \frac{1}{2}\), we show that the Riemann hypothesis is equivalent to the non-vanishing of \(\zeta _\mathcal {P}(s)\) in the region \(\{\sigma >\frac{1}{2}\}\).
For every set of primes \(\mathcal {P}\) that contains the prime 2 and whose counting function satisfies an estimate of the form
$$\begin{aligned} \pi _\mathcal {P}(x)=\delta \,\pi (x)+O\bigl ((\log \log x)^{\varepsilon (x)}\bigr ), \end{aligned}$$
we show that \(\mathcal {P}\) is an exact asymptotic additive basis for \(\mathbb {N}\), i.e. for some integer \(h=h(\mathcal {P})>0\) the sumset \(h\mathcal {P}\) contains all but finitely many natural numbers. For example, an exact asymptotic additive basis for \(\mathbb {N}\) is provided by the set
$$\begin{aligned} \{2,547,1229,1993,2749,3581,4421,5281\ldots \}, \end{aligned}$$
which consists of 2 and every hundredth prime thereafter.
  相似文献   

17.
Let \(\bar{p}(n)\) denote the number of overpartitions of n. Fortin et al. and Hirschhorn and Sellers established some congruences modulo powers of 2 for \(\bar{p}(n)\). Recently, Xia and Yao found several congruences modulo powers of 2 and 3. In particular, they proved that \(\bar{p}(96n+12)\equiv 0 \ (\mathrm{mod}\ 9)\) and \(\bar{p}(24n+19)\equiv 0\ (\mathrm{mod\ }27)\). In this paper, we generalize the two congruences and establish several new infinite families of congruences modulo 9 and 27 for \(\bar{p}(n)\). Furthermore, we prove some strange congruences modulo 9 and 27 for \(\bar{p}(n)\) by employing some results due to Cooper et al. For example, we prove that for \(k\ge 0\), \(\bar{p}(4^{k+1})\equiv 2^{k+3}+6(-1)^k\ (\mathrm{mod} \ 27) \) and \(\bar{p}\left( 7^{2k}\right) \equiv 2-2k\ (\mathrm{mod}\ 9)\). We also present two conjectures on congruences for \(\bar{p}(n)\).  相似文献   

18.
Let \(X\) be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let \(L\) be an ample line bundle on \(X\). Assume that the pair \((X,L)\) is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point \(x \in X\) there exist a Kähler-Einstein Fano manifold \(Z\) and a positive integer \(q\) dividing \(K_{Z}\) such that \(-\frac{1}{q}K_{Z}\) is very ample and such that the germ \((X,x)\) is locally analytically isomorphic to a neighborhood of the vertex of the blow-down of the zero section of \(\frac{1}{q}K_{Z}\). We prove that up to biholomorphism, the unique weak Ricci-flat Kähler metric representing \(2\pi c_{1}(L)\) on \(X\) is asymptotic at a polynomial rate near \(x\) to the natural Ricci-flat Kähler cone metric on \(\frac{1}{q}K_{Z}\) constructed using the Calabi ansatz. In particular, our result applies if \((X, \mathcal{O}(1))\) is a nodal quintic threefold in \(\mathbf {P}^{4}\). This provides the first known examples of compact Ricci-flat manifolds with non-orbifold isolated conical singularities.  相似文献   

19.
In this article we construct link invariants and 3-manifold invariants from the quantum group associated with the Lie superalgebra \(\mathfrak {sl}(2|1)\). The construction is based on nilpotent irreducible finite dimensional representations of quantum group \(\mathcal {U}_{\xi }\mathfrak {sl}(2|1)\) where \(\xi \) is a root of unity of odd order. These constructions use the notion of modified trace and relative \( G \)-modular category of previous authors.  相似文献   

20.
Let \(\mathfrak g\) be a semisimple Lie algebra over a field \(\mathbb K\), \(\text{char}\left( \mathbb{K} \right)=0\), and \(\mathfrak g_1\) a subalgebra reductive in \(\mathfrak g\). Suppose that the restriction of the Killing form B of \(\mathfrak g\) to \(\mathfrak g_1 \times \mathfrak g_1\) is nondegenerate. Consider the following statements: ( 1) For any Cartan subalgebra \(\mathfrak h_1\) of \(\mathfrak g_1\) there is a unique Cartan subalgebra \(\mathfrak h\) of \(\mathfrak g\) containing \(\mathfrak h_1\); ( 2) \(\mathfrak g_1\) is self-normalizing in \(\mathfrak g\); ( 3) The B-orthogonal \(\mathfrak p\) of \(\mathfrak g_1\) in \(\mathfrak g\) is simple as a \(\mathfrak g_1\)-module for the adjoint representation. We give some answers to this natural question: For which pairs \((\mathfrak g,\mathfrak g_1)\) do ( 1), ( 2) or ( 3) hold? We also study how \(\mathfrak p\) in general decomposes as a \(\mathfrak g_1\)-module, and when \(\mathfrak g_1\) is a maximal subalgebra of \(\mathfrak g\). In particular suppose \((\mathfrak g,\sigma )\) is a pair with \(\mathfrak g\) as above and σ its automorphism of order m. Assume that \(\mathbb K\) contains a primitive m-th root of unity. Define \(\mathfrak g_1:=\mathfrak g^{\sigma}\), the fixed point algebra for σ. We prove the following generalization of a well known result for symmetric Lie algebras, i.e., for m=2: (a) \((\mathfrak g,\mathfrak g_1)\) satisfies ( 1); (b) For m prime, \((\mathfrak g,\mathfrak g_1)\) satisfies ( 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号