首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the presence of a symmetry-breaking term, we discuss the classical stability of a scalar field conformally coupled to five-dimensional gravity. When the scalar field φ has the vacuum expectation values 〈φ〉 = ±μ, this system is classically unstable.  相似文献   

2.
We propose a new initial condition for the homogeneous and isotropic quantum cosmology, where the source of the gravitational field is a conformally coupled scalar field, and the maximally symmetric hypersurfaces have positive curvature. After solving corresponding Wheeler–DeWitt equation, we obtain exact solutions in both classical and quantum levels. We propose appropriate initial condition for the wave packets which results in a complete classical and quantum correspondence. These wave packets closely follow the classical trajectories and peak on them. We also quantify this correspondence using de Broglie–Bohm interpretation of quantum mechanics. Using this proposal, the quantum potential vanishes along the Bohmian paths and the classical and Bohmian trajectories coincide with each other. We show that the model contains singularities even at the quantum level. Therefore, the resulting wave packets closely follow the classical trajectories from big-bang to big-crunch.  相似文献   

3.
We reconsider the effective mass of a scalar field which interact with visible sector via Planck-suppressed coupling in supergravity framework. We focus on the radiation-dominated (RD) era after inflation. In this era, the effective mass is given by thermal average of interaction terms. To make our analysis clear, we rely on Kadanoff–Baym equations to evaluate the thermal average. We find that, in RD era, a scalar field acquires the effective mass of the order of H.  相似文献   

4.
5.
We present a gauge fixing of gravity coupled to a scalar field in spherical symmetry such that the Hamiltonian is an integral over space of a local density. Such a formulation had proved elusive over the years. As in any gauge fixing, it works for a restricted set of initial data. We argue that the set could be large enough to attempt a quantization the could include the important case of an evaporating black hole.  相似文献   

6.
Preheating describes the stage of rapidly depositing the energy of cosmological scalar field into excitations of other light fields. This stage is characterized by exponential particle production due to the parametric resonance. We study this process in the frame of matter bounce cosmology. Our results show that the preheating process in bouncing cosmology is even more efficient than that in inflationary cosmology. In the limit of weak coupling, the period of preheating is doubled. For the case of normal coupling, the back-reaction of light fields can lead to thermalization before the bouncing point. The scenario of matter bounce curvaton could be tightly constrained due to a large coupling coefficient if the curvaton field is expected to preheat the universe directly. However, this concern can be greatly relaxed through the process of geometric preheating.  相似文献   

7.
8.
Charged perfect fluid with vanishing Lorentz force and massless scalar field is studied for the case of stationary cylindrically symmetric spacetime. The scalar field can depend both on radial and longitudinal coordinates. Solutions are found and classified according to scalar field gradient and magnetic field relationship. Their physical and geometrical properties are examined and discussion of particular cases, directly generalizing Gödel-type spacetimes, is presented.  相似文献   

9.
In order to obtain models of the homogeneous Isotropic universe that can oscillate without going through a singular state, a cosmic field is introduced that produces a negative pressure, following the work of Pachner. One is led to single out a particular form for this field. If one adds to the Einstein field equations an expression corresponding to this field, taking into account the existence of a cosmic time, one obtains theC-field of Hoyle and Narlikar for the case of conservation of matter.  相似文献   

10.
11.
Consequences of a massless scalar field in conformally flat space-time are studied. Then a wide class of solutions of the scalar field is obtained.  相似文献   

12.
13.
The global symmetry implied by the fact that one can multiply all masses with a common constant is made into a local, gauge symmetry. The matter action then becomes Conformally invariant and it seems natural to choose for the corresponding scalar gauge field the action for a conformally invariant (massless) scalar field. The resulting conformally invariant theory turns out to be equivalent to general relativity. Since this means that the usual Einstein-Hilbert action is not, in fact, a true gauge action for the space-time geometry, the full theory ought to be supplied with such a term. Gauge-theoretic arguments and conformal invariance requirements dictate its form.  相似文献   

14.
We consider the process of photon emission by an electron in the radiation-dominated universe. We find a differential probability for the process and discuss various kinematic variants. We show that the total probability of the process is finite.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, Vol. 29, No. 9, pp. 96–100, September, 1986.  相似文献   

15.
As our understanding of the past in a bouncing universe is limited, it becomes difficult to propose a cosmological model which can give some understanding of the causal structure of the bouncing universe. In this article we address the issue related to the particle horizon problem in the bouncing universe models. It is shown that in many models the particle horizon does not exist, and consequently the horizon problem is trivially solved. In some cases a bouncing universe can have a particle horizon and we specify the conditions for its existence. In the absence of a particle horizon the Hubble surface specifies the causal structure of a bouncing universe. We specify the complex relationship between the Hubble surface and the particle horizon when the particle horizon exists. The article also address the issue related to the event horizon in a bouncing universe. A toy example of a bouncing universe is first presented where we specify the conditions which dictate the presence of a particle horizon. Next we specify the causal structures of three widely used bouncing models. The first case is related to quintom matter bounce model, the second one is loop quantum cosmology based bounce model and lastly f(R) gravity induced bounce model. We present a brief discussion on the horizon problem in bouncing cosmologies. We point out that the causal structure of the various bounce models fit our general theoretical predictions.  相似文献   

16.
17.
18.
19.
Taking a spherically symmetric isotropic line element, the case of a viscous fluid distribution interacting with scalar field is investigated. Four new solutions are obtained and the models are found to be expanding ones. Their physical and geometrical properties are studied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号