共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
自适应光学系统要求波前传感器能实现动态实时测量,曲率波前传感技术符合这一发展要求。一种新型的基于扭曲衍射光栅的曲率波前传感器在探测装置的实现方法方面具有较大优势,其波前重构已应用于光学度量。根据衍射光学理论,对其探测信号进行数值模拟,并利用Neumann边界条件的Green函数法对其波前重构进行数值模拟。结果表明:Green函数法归结为2矩阵相乘,计算速度快,达到实时重构要求; Green函数法对阶数不高的Zernike多项式重构效果较好;影响重构误差的主要因素是光强梯度的边界噪声。 相似文献
3.
本文提出了一种分块进行波前重构的快速算法。它具有所需存贮量小、噪声传递系数小及数值稳定性好等特点。定性分析与计算机模拟结果表明,由于算法本身带来新的重构误差,它的重构精度与通常算法基本相同。 相似文献
4.
在气动光学研究中,Ronald J. Hugo 和Eric J. Jumper的小孔径光束技术(SABT)波前重构算法在理论推导中忽略了与涡结构尺度相关的对流速度的差异,因此必然会给波前重构带来误差。用小波分析提取了上、下游探测光束输出的不同尺度的光程信号,通过计算两个探测光束输出的同一尺度信号的互相关系数,并利用互相关系数达到最大值对应的延迟时间研究了尺度相关的对流速度,然后再进行尺度相关的小孔径光束波前重构。结果表明:相对于单一对流速度的小孔径光束波前重构算法,该尺度相关的波前重构算法能有效地提高波前重构的精度。 相似文献
5.
在气动光学研究中,Ronald J. Hugo 和Eric J. Jumper的小孔径光束技术(SABT)波前重构算法在理论推导中忽略了与涡结构尺度相关的对流速度的差异,因此必然会给波前重构带来误差。用小波分析提取了上、下游探测光束输出的不同尺度的光程信号,通过计算两个探测光束输出的同一尺度信号的互相关系数,并利用互相关系数达到最大值对应的延迟时间研究了尺度相关的对流速度,然后再进行尺度相关的小孔径光束波前重构。结果表明:相对于单一对流速度的小孔径光束波前重构算法,该尺度相关的波前重构算法能有效地提高波前重构的精度。 相似文献
6.
7.
8.
9.
10.
11.
分析了应用哈特曼传感器测量大气湍流畸变波前时,哈特曼传感器的泽尼克模式复原误差与子孔径划分形式、泽尼克模式复原阶数等的关系,给出了科尔莫哥洛夫湍流下计算哈特曼传感器模式复原误差的公式。对比分析了8×8子孔径划分和32×32子孔径划分的两个哈特曼传感器在实际大气湍流中同步测量的实验结果。 相似文献
12.
13.
14.
15.
16.
We propose a new algorithm for wavefront sensing based on binary intensity modulation. The algorithm is based on the fact that a wavefront can be expended with a series of orthogonal and binary functions, the Walsh series. We use a spatial light modulator(SLM) to produce different binary-intensity-modulation patterns which are the simple linear transformation of the Walsh series. The optical fields under different binary-intensity-modulation patterns are detected with a photodiode.The relationships between the incident wavefront modulated with the patterns and their optical fields are built to determinate the coefficients of the Walsh series. More detailed and strict relationship equations are established with the algorithm by adding new modulation patterns according to the properties of the Walsh functions. An exact value can be acquired by solving the equations. Finally, with the help of phase unwrapping and smoothing, the wavefront can be reconstructed. The advantage of the algorithm is providing an analytical solution for the coefficients of the Walsh series to reconstruct the wavefront. The simulation experiments are presented and the effectiveness of the algorithm is demonstrated. 相似文献
17.
A wavefront evaluation method based on sparse subaperture was proposed for the collimated wavefront of 300 mm aperture wavelength-tuned interferometer. The method used the wavefront data of sparse aperture to construct a uniform and equally spaced subaperture arrangement model and utilized the simultaneous fitting algorithm to realize the reconstruction of the full-aperture collimated wavefront. The change rules of subaperture spacing and subaperture size on the reconstruction accuracy were analyzed by the numerical calculation, and the optimized subaperture arrangement way was obtained. Finally, an optimized subaperture arrangement with a subaperture size of 10.8 mm and an adjacent subaperture center spacing of 9.72 mm was used for the sparse subaperture evaluation of 300 mm aperture collimated wavefront. The simulation results show that the optimized sparse subaperture evaluation wavefront residual peak valley (PV) value is 0.001 6λ and the residual root mean square (RMS) value is 1.689 3e−4 λ. Copyright ©2022 Journal of Applied Optics. All rights reserved. 相似文献
18.
Zhiyang Li 《Optics Communications》2010,283(19):3646-3657
A method for high precision optical wavefront reconstruction using low resolution spatial light modulators (SLMs) was proposed. It utilizes an adiabatic waveguide taper consisting of a plurality of single-mode waveguides to decompose an incident light field into simple fundamental modes of the single-mode waveguides. By digital generation of the conjugate fields of those simple fundamental modes a field proportional to the original incident light field might be reconstructed accurately based on reciprocity. Devices based on the method using transparent and reflective SLMs possess no aberration like that of a conventional optic lens and are able to achieve diffraction limited resolution. Specifically on the surface of the narrow end of a taper a resolution much higher than half of the wavelength is attainable. The device may work in linear mode and possesses unlimited theoretical 3D space-bandwidth product (SBP). The SBP of a real device is limited by the accuracy of SLMs. A pair of 8-bit SLMs with 1000 × 1000 = 106 pixels could provide a SBP of about 5 × 104. The SBP may expand by 16 times if 10-bit SLMs with the same number of pixels are employed or 16 successive frames are used to display one scene. The device might be used as high precision optical tweezers, or employed for continuous or discrete real-time 3D display, 3D measurement, machine vision, etc. 相似文献