首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
徐苗  彭俊彪 《物理学报》2010,59(3):2131-2136
用渡越时间法(TOF)分别测试了采用旋涂和滴涂方法制备的poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4- phenylenevinylene](MEH-PPV)薄膜的空穴迁移率,用原子力显微镜对这两种方法制备的薄膜表面形貌进行了研究.结果表明使用滴涂法有利于聚合物形成有序薄膜结构,能有效提高空穴迁移率.用滴涂法制备的基于MEH-PPV:phenyl C61- butyric acid methyl ester(PCBM)共混薄膜的太阳电池,对比用旋涂法制备的太阳电池,其能量 关键词: 太阳电池 聚合物 迁移率  相似文献   

2.
李斌  张国峰  景明勇  陈瑞云  秦成兵  高岩  肖连团  贾锁堂 《物理学报》2016,65(21):218201-218201
研究聚合物薄膜纳米尺度的动力学特性对于高性能材料的制备具有重要的意义.本文利用尼罗红单分子作为光学探针吸附在聚丙烯酸甲酯(PMA)聚合物链上,研究该聚合物薄膜的动力学特性.通过单分子散焦宽场荧光成像显微镜技术测量了单分子随PMA聚合物链转动弛豫的三维再取向特性,当环境温度高于PMA的玻璃点温度19 K时,发现处于PMA聚合物薄膜中的单分子光学探针的转动态和非转动态的持续时间概率密度服从指数截止的幂律分布.研究结果表明该温度下PMA聚合物薄膜的纳米环境动力学仍存在空间和时间异构性.  相似文献   

3.
吴艳南  徐明  吴定才  董成军  张佩佩  纪红萱  何林 《物理学报》2011,60(7):77505-077505
采用溶胶-凝胶旋涂法在玻璃衬底上制备了Co,Sn掺杂ZnO系列薄膜.通过金相显微镜和X射线衍射(XRD)研究了Co与Sn掺杂对薄膜的表面形貌和微结构的影响.XRD结果表明,所有ZnO薄膜样品都存在(002)择优取向,特别Sn单掺ZnO薄膜的c轴择优取向最为显著,而且晶粒尺寸最大.XPS测试表明样品中Co和Sn的价态分别为2+和4+,证实Co2+,Sn4+进入了ZnO的晶格.室温光致发光谱(PL)显示在所有的样品中都有较强的蓝光双峰发射和较弱的绿光发 关键词: ZnO薄膜 溶胶-凝胶 掺杂 光致发光  相似文献   

4.
通过Friedel-Crafts烷基化反应合成了一种含三氰基二氢呋喃结构单元的新型非线性光学聚合物(P1),并采用旋涂法和电晕极化方式制备了极化聚合物膜.利用原子力显微镜和紫外可见分光光度计研究了极化前、后聚合物膜的表面形貌和吸光度的变化,并根据极化前后薄膜吸光度的变化计算了发色团分子的有序度,φ=0.20.采用二次谐...  相似文献   

5.
纳米MEH-PPV阵列的光致发光   总被引:1,自引:1,他引:0  
以多孔氧化铝为模板,将可溶性发光聚合物聚(2-甲氧基-5-(2’-乙基己氧基)-1,4-对苯乙炔)(MEH-PPV)镶嵌在纳米孔中,制备出高发光效率的纳米发光聚合物阵列,其光学特性与MEH-PPV薄膜显著不同。纳米孔内的MEH-PPV分子链形成链束,链束中的分子链数目依赖于制备纳米MEH-PPV阵列所用溶液的浓度。相对于稀溶液,在由浓溶液制备的纳米MEH-PPV阵列中,MEH—PPV链束的分子链数目较多,链间作用使MEH-PPV的能带展宽,能隙减小,因而浓溶液获得的纳米MEH—PPV阵列的光致发光峰红移。热处理纳米MEH-PPV阵列的PL谱表明,纳米孔内的聚合物分子链的弛豫运动受到限制。  相似文献   

6.
阴极电沉积ZnO薄膜的取向控制生长   总被引:1,自引:1,他引:0       下载免费PDF全文
采用阴极电沉积法,在Zn(NO3)2水溶液中,以304不锈钢为衬底制备了ZnO薄膜,研究了Zn2+浓度和电流密度对ZnO薄膜择优取向的影响规律。XRD结果表明:随着Zn2+浓度和电流密度增大,ZnO薄膜逐渐由(002)面择优取向生长转变为(101)面择优取向生长;当Zn2+浓度为0.005mol.L-1、电流密度为2.0mA.cm-2或Zn2+浓度为0.05mol.L-1、电流密度为0.5mA.cm-2时,可以得到(002)面择优取向生长的ZnO薄膜;当Zn2+浓度为0.05mol.L-1、电流密度为2.0mA.cm-2时,可以得到(101)面择优取向生长的ZnO薄膜。根据二维晶核理论,通过分析不同生长条件下的过饱和度及其对ZnO的(002)型和(101)型二维晶核形核活化能的影响,对这一规律进行了解释。可见,通过改变Zn2+浓度和电流密度能够实现阴极电沉积ZnO薄膜的取向可控生长。  相似文献   

7.
曹晓燕  叶辉  邓年辉  郭冰  顾培夫 《物理学报》2004,53(7):2363-2367
采用NbCl5作为先驱物,利用溶胶-凝胶法在Si(100)衬底上成功获得高度择优取向的铁电铌酸锶钡(SBN)薄膜.与用Nb(OC2H5)5作为先驱物的SBN薄膜相比,NbCl5配制的薄膜前驱溶液中含有一定数量的K离子.K离子的含量对SBN薄膜取向的影响存在一个最优值.二次离子质谱测试发现,K离子对SBN晶胞的溶入和对Si衬底的渗透能够同时使SBN晶胞和Si晶胞产生微小扭曲,从而起到调整薄膜与衬底的匹配关系,并最终促使SBN薄膜c轴高度择优取向的生长.测试了薄膜的光学特性. 关键词: 铌酸锶钡 溶胶-凝胶方法 择优取向  相似文献   

8.
方月婷  易建鹏  陈锦山  汪洪杰  池浪  夏瑞东 《物理学报》2016,65(5):56101-056101
采用喷墨打印的方法对衬底进行图形化, 结合链取向技术, 实现聚合物混合体Poly(9, 9-dioctylfluorene-co-benzothiadiazole)(F8BT, 主体)和Red F(客体)在指定区域链取向. 利用链取向区域内外的折射率差异, 设计出了各种宽度的薄膜光波导, 使光信号在链取向区域传播. 同时, 这一共混体系中主体的荧光光谱与客体的吸收光谱区域重叠, 可以使有效的能量传递发生, 利用主体向客体的能量传递机理, 使链取向处理后的聚合物混合体实现了红光发射.  相似文献   

9.
段芳莉  王明  刘静 《物理学报》2015,64(6):66801-066801
应用大规模分子动力学方法, 模拟了锥形探头在非晶态聚合物薄膜表面的滑动摩擦过程, 研究了摩擦导致的聚合物薄膜表层微观结构改变, 以及探头与基体间黏着作用、滑动速度和分子链长度对基体表层微观结构改变的影响. 当探头与基体之间为黏着作用时, 摩擦导致基体表面滑痕区域的键取向沿滑动方向重新取向, 导致表层分子链回转半径沿滑动方向伸长, 并且这些表层微观结构的改变程度随滑动速度的减小而增大. 在摩擦导致结构改变的过程中, 链端单体和链中单体的贡献作用不同, 形成了不同的分子链拉伸变形机制. 当样本缠结度较大或探头滑动速度较小时, 相比于链中单体, 探头对链端单体的拖曳作用使更多分子链发生拉伸变形. 研究还发现, 在探头与聚合物薄膜系统中, 使薄膜表层微观结构发生改变是摩擦能量耗散的重要途径.  相似文献   

10.
采取光电流的飞行时间法测量多个通过P3HT(poly(3-hexylthiophene))氯仿溶液用滴涂法制备的有机薄膜所构成的ITO/P3HT/Al器件中的载流子渡越时间,记录到具有较大数据范围的迁移率分布,将全部数据在P-F图(Poole-Frenkel plot)上分析得到迁移率规律地分为三组,可以判断P3HT中存在有三种或更多的不同载流子输运机制。  相似文献   

11.
Because of favorable charge transport properties with a lower possibility of recombination, bilayer structure solar cells have received significant ongoing attention. The simplest approach to obtain better transport properties of a charge carrier is to increase the crystallinity of the active layer. In this work, we investigated the effect of the crystallinity of poly(3-hexylthiophene) (P3HT) on the PCE of bilayer solar cells. The self-assembled nano-fibril morphology induced by the addition of the non-soluble acetonitrile (AN) solvent induces a significant improvement of charge transport properties in field-effect transistors (FET). However, the self-assembled nano-fibril morphology of P3HT did not have a beneficial effect on the bilayer solar cells. Since the P3HT nano-fibrils were generally placed in parallel with the substrate, the FET device which uses lateral transport could produce an enhancement of the device properties. However, because of the difficulty of charge transport in the vertical direction between horizontally aligned fibrils, the properties of the solar cell device did not improve with increased P3HT crystallinity. Therefore, we concluded that simply increasing the crystallinity may not be sufficient to deliver a PCE enhancement in bilayer structures because of the anisotropic transport properties of the semiconducting polymer which depend on the orientation of the backbone.  相似文献   

12.
The growth of ZnO nanorod arrays via a template-free sol-gel process was investigated. The nanorod is single-crystalline wurtzite structure with [0 0 0 1] growth direction determined by the transmission electron microscope. The aligned ZnO arrays were obtained directly on the glass substrates by adjusting the temperatures and the withdrawal speeds, without seed-layer or template assistant. A thicker oriented ZnO nanorod arrays was obtained at proper experimental conditions by adding dip-coating layers. Room temperature photoluminescence spectrum exhibits an intensive UV emission with a weak broad green emission as well as a blue double-peak emission located at 451 and 468 nm, respectively. Further investigation results show that the difference in the alignment of nanorods ascribes to the different orientations of the nanoparticles-packed film formed prior to nanorods on the substrate. Well ordered ZnO nanorods are formed from this film with good c-axis orientation. Our study is expected to pave a way for direct growth of oriented nanorods by low-cost solution approaches.  相似文献   

13.
This study presents a p-type doping method for donor–acceptor-type conjugated semiconducting copolymer-based field-effect transistors (FETs) with a fluoropolymer dielectric film. The polymeric FET, which initially comprises a non-polar polymer dielectric layer (poly (methyl methacrylate), PMMA), shows ambipolar behavior owing to the well-balanced electron-accepting and -donating properties of the cyclopentadithiophene (CDT) and pyridyl-2,1,3-thiadiazole (PTz)-based conjugated polymer backbone system. However, when combined with an amorphous fluoropolymer (CYTOP) dielectric layer, the FET device exhibits that their ambipolar behavior remarkably changes to a high-performance p-type FET; the hole mobility enhanced by a factor of ~3 and the threshold voltage significantly shifted from −29 V to −12 V. The density of trap states in the CDT-PTz-based polymeric FETs with a CYTOP dielectric layer, which was estimated from the temperature-dependent transfer characteristics, was narrower and shallower than that of polymeric FETs with a PMMA dielectric layer. As such, it can be inferred that the deep-trap states are filled with additional doped charges from the surface polarization induced by the fluorinated dielectrics at the semiconductor-dielectric interface.  相似文献   

14.
In this study, we employ a nucleation additive 4-octylbenzoic acid (OBA) with an optimized solvent evaporation method to regulate crystal orientation and grain width of small-molecule organic semiconductors. When 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) was utilized as a benchmark material to mix with the additive, a self-assembled OBA interfacial layer was formed and promoted uniform deposition of nucleation seeds. As a result, the TIPS pentacene/OBA blend crystalline film exhibited crystal alignment in long range order, attributing to a 11-fold reduction of the crystal misorientation angle and a 4-fold increase of the grain width. We further discussed the important correlation between the effective hole mobility, grain boundaries, grain width and length, and nucleation sites. Organic thin film transistors were fabricated to test charge transport, yielding a hole mobility of up to 0.17 cm2/V. This work provides a new pathway to modulate the nucleation and crystallization events of organic semiconductors, and can potentially be applied to optimize the thin film morphology and electrical performance of organic semiconducting materials in general.  相似文献   

15.
Two-dimensional nanostripes are formed in thin films of side-chain liquid-crystalline polymer films when the material enters the smectic phase. The structure is investigated using transmission electron microscopy. Electron diffraction patterns show that the chain molecules are mostly aligned in the film plane and the average molecular director is parallel to the direction of the stripes. We discuss factors affecting the stripe amplitude and periodicity, such as the film thickness and the temperature of annealing in the nematic phase, and suggest a possible mechanism for their formation. We propose that an equilibrium instability occurs due to a competition between the layer-aligning effect of the substrate and the planar director alignment, forcing smectic layers perpendicular to the film surface. The stripes decorate the overall patterns of nematic director in the polymer film and provide a means of high-resolution imaging for observation of textures and disclinations.Received: 10 June 2003, Published online: 19 August 2003PACS: 68.37.Lp Transmission electron microscopy (TEM) (including STEM, HRTEM, etc.) - 61.30.Vx Polymer liquid crystals - 61.30.Hn Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions - 68.55.Nq Composition and phase identification  相似文献   

16.
The alignment of azobenzene molecules in DR19-PUI film induced by all-optical poling is identified. When the writing beams of frequencies ω and 2ω are both linearly polarized with their polarization directions parallel to each other, azobenzene molecules tend to reorient to perpendicular direction (i.e. direction perpendicular to the polarization of writing beams). At the end of the writing process more molecules orient in perpendicular direction than those in parallel direction (i.e. direction parallel to the polarization of writing beams). The alignment of molecules in parallel or perpendicular direction is, respectively, characteristic of noncentrosymmetry or centrosymmetry. It is the alignment of molecules in parallel direction that results in the second-order nonlinearity in the poled film.  相似文献   

17.
We study the electronic structure and transport for Dirac electron on the surface of a three-dimensional (3D) topological insulator attached to an electromagnetic superlattice. It is found that, by means of the transfer-matrix method, the number of electronic tunneling channels for magnetic barriers in antiparallel alignment is larger than that in parallel alignment, which stems to the energy band structures. Interestingly, a remarkable semiconducting transport behavior appears in this system with a strong magnetic barrier due to low energy band nearly paralleling to the Fermi level. Consequently, there is only small incident angle transport in the higher energy region when the system is modulated mainly by the higher electric barriers. We further find that the spatial distribution of the spin polarization oscillates periodically in the incoming region, but it is almost in-plane with a fixed direction in the transmitting region. The results may provide a further understanding of the nature of 3D TI surface states, and may be useful in the design of topological insulator-based electronic devices such as collimating electron beam.  相似文献   

18.
王建禄  胡伟达 《中国物理 B》2017,26(3):37106-037106
Two-dimensional(2D) materials, such as graphene and Mo S2 related transition metal dichalcogenides(TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials,possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor(FET) structures with ferroelectric gate dielectric construction(termed Fe FET). One type of device is for logic applications, such as a graphene and TMDC Fe FET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material Fe FET.  相似文献   

19.
A model of the alignment of azobenzene molecules in polymer film induced by all-optical poling is proposed and verified by experiment. We found that when the writing beams of frequencies ω and 2ω are both linearly polarized with their polarization directions parallel to each other, azobenzene molecules tend to reorient to the direction perpendicular to the writing beams polarization. At the end of the writing process, more molecules orient to the direction perpendicular to the writing beams polarization than those which orient to the parallel direction. The alignment of molecules parallel or perpendicular to the polarization of the writing beams is characteristic of polarity or no polarity, respectively. The alignment of molecules along the polarization of writing beams results in the second order nonlinearity in the polymer film. According to the model, a new method to improve the optical poling efficiency is put forward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号