首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
CaCu3Ti4O12陶瓷的介电特性与弛豫机理   总被引:2,自引:0,他引:2       下载免费PDF全文
成鹏飞  王辉  李盛涛 《物理学报》2013,62(5):57701-057701
本文采用Novocontrol宽频介电谱仪在-100 ℃–100 ℃温 度范围内、0.1 Hz–10 MHz频率范围内测量了表面层打磨前 后CaCu3Ti4O12陶瓷的介电特性, 分析了CaCu3Ti4O12陶瓷的介电弛豫机理. 首先, 基于对宏观“壳-心”结构的定量分析, 排除了巨介电常数起源于表面层效应的可能性; 其次, 基于经典Maxwell-Wagner夹层极化及其活化能物理本质的分析, 排除了巨介电常数起源于经典Maxwell-Wagner极化的可能性; 最后, 依据晶界Schottky势垒与本征点缺陷的本质联系, 提出了巨介电常数起源于Schottky势垒边界陷阱电子弛豫的新机理. 陷阱电子弛豫机理反映了CaCu3Ti4O12陶瓷本征点缺陷、 电导、介电常数之间的本质关系. 关键词: 3Ti4O12')" href="#">CaCu3Ti4O12 介电弛豫 Schottky势垒 点缺陷  相似文献   

2.
CaCu3Ti4O12陶瓷的微观结构及直流导电特性   总被引:2,自引:0,他引:2       下载免费PDF全文
杨雁  李盛涛 《物理学报》2009,58(9):6376-6380
采用传统固相反应法制备了CaCu3Ti4O12陶瓷.XRD证实其CaCu3Ti4O12相;SEM观察到明显的晶粒晶界结构,晶界区亦由小晶粒构成;结合EDS结果,判定晶界区小晶粒为CuO.在较宽的温度范围内,CaCu3Ti4O12陶瓷的介电常数保持在105左右;当频率为103 Hz温度小于150 K时,介电常数迅速下降.在173—373 K温度范围内,通过其I-V特性,得到CaCu3Ti4O12陶瓷直流电导随温度的变化:直流电导与温度的关系可分为三部分,对应的活化能分别为0.681 eV,0.155 eV和0.009 eV,这与CuO陶瓷直流电导活化能一致.可以认为晶界区的CuO小晶粒在CaCu3Ti4O12陶瓷的直流电导中占主导,这为解释CaCu3Ti4O12陶瓷反常的介电性能提供了新的思路. 关键词: 3Ti4O12')" href="#">CaCu3Ti4O12 微观结构 直流电导 介电特性  相似文献   

3.
采用固相烧结法合成了单相巨介电常数氧化物CaCu3Ti4O12(CCTO).用阻抗分析仪分析了10—420 K温度范围内的介电频谱和阻抗谱特性,并结合ZVIEW软件进行了模拟.结果表明:温度高于室温时,频谱出现两个明显的弛豫台阶,低频弛豫介电常数随温度升高而显著增大,表现出热离子极化特点;温度低于室温时,频谱表现出类德拜弛豫,且高、低平台介电常数值基本不随温度变化,表现出界面极化特点和较好的温度稳定性.频谱中依次出现的介电弛豫对应于阻抗谱中 关键词: 3Ti4O12')" href="#">CaCu3Ti4O12 介电频谱 阻抗谱 Cole-Cole半圆弧  相似文献   

4.
贾然  顾访  吴珍华  赵学童  李建英 《物理学报》2012,61(20):466-472
具有巨介电常数的CaCu3Ti4O12陶瓷是一种理想的高储能密度电容器材料.本文以草酸为沉淀剂、以乙酸铵为调节pH值的定量缓冲剂,获得制备CaCu3Ti4O12陶瓷的简化共沉淀法.确定了pH=30为制备前驱粉料的最佳反应条件.通过显微分析和介电性能测量,发现在1040℃—1100℃范围内,随着烧结温度的提高,陶瓷的品粒尺寸增大,非线性系数上升,电位梯度和介电损耗下降,1100℃烧结的试样tanδ最低达到0.04.认为CaCu3Ti4O12陶瓷介电损耗包含直流电导分量、低频松弛损耗和高频松弛损耗.低频松弛活化能为0.51 eV.,对应于晶界处的Maxwell-Wagner松弛极化;高频松弛过程活化能为0.10 eV,对应晶粒内部的氧空位缺陷.烧结温度的升高导致晶界电阻下降.  相似文献   

5.
李盛涛  王辉  林春江  李建英 《物理学报》2013,62(8):87701-087701
由于CaCu3Ti4O12巨介电常数陶瓷的低频区直流电导较大, 本文采用模量 M"-f频谱表征与分析了低频和高频的两个松弛极化过程. 研究认为, 这两个特征峰属于晶界区Schottky 势垒耗尽层边缘深陷阱的电子松弛过程, 其中高频松弛峰起源于晶粒本征缺陷的电子松弛过程, 而低频松弛峰则为与氧空位有关的松弛极化过程. 对于CaCu3Ti4O12这类低频下具有高直流电导的陶瓷材料, 采用模量频谱能更有效地分析研究其损耗极化机理. 关键词: 3Ti4O12陶瓷')" href="#">CaCu3Ti4O12陶瓷 模量 松弛过程 电导  相似文献   

6.
利用传统的固相反应工艺,在不同的烧结温度下制备了一系列的CaCu3Ti4O12陶瓷样品,考察了其微观结构以及介电和复阻抗方面的电学性质.研究发现这些样品在微观结构方面可分为三种类型,高介电性与微观结构有着密切的关联性.室温下,样品的低频介电常数随陶瓷晶粒尺寸的增大而提高.随着测试温度的升高,不同微观结构类型的样品呈现出不同的电学性质的变化,但其中也存在着一些相同的特征.高温下,介电频谱呈现出一个低频介电响应和两个类Debye型弛豫色散,复阻抗谱呈现出三个Cole-Cole半圆弧.将实验上观测到的电学性质的起因归于陶瓷多晶微结构中的晶畴、晶界和晶粒内的缺陷. 关键词: 3Ti4O12')" href="#">CaCu3Ti4O12 微观结构 电学性质  相似文献   

7.
王辉  林春江  李盛涛  李建英 《物理学报》2013,62(8):87702-087702
CaCu3Ti4O12介电损耗较大且损耗机理尚不明确, 因此限制了其应用.本文采用固相法和共沉淀法合成CaCu3Ti4O12陶瓷, 利用宽带介电温谱研究在交流小信号作用下, 双Schottky势垒耗尽层边缘深陷阱的电子松弛过程、 载流子松弛过程以及CaCu3Ti4O12陶瓷的介电损耗性能. 研究发现, 在低频下以跳跃电导和直流电导的响应为主, 而高频下主要为深陷阱能级的松弛过程所致, 特别是活化能为0.12 eV的深陷阱浓度, 这是决定CaCu3Ti4O12陶瓷高频区介电损耗的重要因素.降低直流电导, 有利于降低低频区介电损耗; 而高频区介电损耗的降低, 需要降低深陷阱浓度或增大晶粒尺寸. 共沉淀法制备的CaCu3Ti4O12陶瓷, 有效降低直流电导及控制深陷阱浓度, 介电损耗降低明显. 关键词: 3Ti4O12陶瓷')" href="#">CaCu3Ti4O12陶瓷 介电损耗 松弛过程 Schottky势垒  相似文献   

8.
CaCu3Ti4O12块材和薄膜的巨介电常数   总被引:2,自引:2,他引:2       下载免费PDF全文
赵彦立  焦正宽  曹光旱 《物理学报》2003,52(6):1500-1504
用固相反应法和脉冲激光沉积(PLD)制备了CaCu3Ti4O12块材和薄膜,获得了相对介电常数ε′(1kHz,300K)高于14000的介电特性,是目前该体系最好的结果.报道了(00l)取向高质量CaCu3Ti4O12外延薄膜及其介电性质.C aCu3Ti4O12相对介电常数ε′在100—300K温度范围 内 关键词: 3Ti4O12')" href="#">CaCu3Ti4O12 巨介电常数 PLD  相似文献   

9.
阻挡层电容对ACu3Ti4O12巨介电性能的影响研究   总被引:4,自引:0,他引:4       下载免费PDF全文
周小莉  杜丕一 《物理学报》2005,54(1):354-358
用固相反应法成功地制备了ACu3Ti4O12(A=Ca,La,Y)系列陶瓷,在50—300K温区内测量了样品的介电性能,分析了交流电导与外场频率、温度的关系.发现在相同组分的CaCu3Ti4O12晶体中相对含量大于等于0776时,样品的相对介电常数可达104;而A位上价态为3+的化合物La2/3Cu3Ti4O12和Y2/3Cu3Ti4O12相对介电常数仅为103.分析表明,样品中内部阻挡层电容数目的多少直接对ACu3Ti4O12的相对介电常数产生影响.电导与温度及频率的关系是由电子、声子与外场的共同作用决定的. 关键词: ACu3Ti4O12 巨介电 晶相含量 阻挡层电容  相似文献   

10.
La掺杂对Bi4Ti3O12薄膜铁电性能的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
郭冬云  王耘波  于军  高俊雄  李美亚 《物理学报》2006,55(10):5551-5554
利用Sol-Gel法在Pt/Ti/SiO2/Si衬底上制备出Bi4Ti3O12和Bi3.25La0.75Ti3O12薄膜,研究了La掺杂对Bi4Ti3O12薄膜的晶体结构、铁电性能和疲劳特性的影响,发现La掺杂没有改变Bi4Ti3O12薄膜的基本晶体结构,并且提高了Bi4Ti3O12铁电薄膜的剩余极化值和抗疲劳性能,对La掺杂改善Bi4Ti3O12铁电薄膜性能的机理进行了讨论. 关键词: 铁电性能 4Ti3O12薄膜')" href="#">Bi4Ti3O12薄膜 3.25La0.75Ti3O12薄膜')" href="#">Bi3.25La0.75Ti3O12薄膜 sol-gel法 La掺杂  相似文献   

11.
杨昌平  李旻奕  宋学平  肖海波  徐玲芳 《物理学报》2012,61(19):197702-197702
本文研究了在真空、空气和氧气中烧结制备的三种 CaCu3Ti4O12陶瓷材料的介电特性. 交流阻抗测量结果表明在10—300 K温度范围, 三种样品的介电温谱中均出现三个平台, 其电阻实部和电容虚部在相应温度出现损耗峰, 真空条件烧结的样品具有较高的介电平台和较明显的电阻实部与电容虚部峰值, 表明氧含量和氧空位对CaCu3Ti4O12的介电性质具有重要影响, 介电温谱出现的三个平台分别源于晶粒、晶界及氧空位陷阱.温谱分析表明晶粒的激活能与烧结气氛有较大关系,氧空位引起的电子短程跳跃及跳跃产生的极化子是晶粒电导和电容的主要起源.氧空位陷阱的激活能基本与烧结气氛无关,约为0.46 eV. 氧空位对载流子的陷阱作用是CaCu3Ti4O12 低频高介电常数的重要起源.  相似文献   

12.
CaCu3Ti4O12块材和薄膜的巨介电常数   总被引:1,自引:0,他引:1       下载免费PDF全文
用固相反应法和脉冲激光沉积 (PLD)制备了CaCu3Ti4O1 2 块材和薄膜 ,获得了相对介电常数ε′( 1kHz ,3 0 0K)高于140 0 0的介电特性 ,是目前该体系最好的结果 .报道了 ( 0 0l)取向高质量CaCu3Ti4O1 2 外延薄膜及其介电性质 .CaCu3Ti4O1 2 相对介电常数ε′在 10 0— 3 0 0K温度范围内基本保持恒定 ,稳定性好 .基于跳跃电导模型 ,对CaCu3Ti4O1 2薄膜介电电导的频率依赖关系作了合理解释  相似文献   

13.
刘鹏  贺颖  李俊  朱刚强  边小兵 《物理学报》2007,56(9):5489-5493
采用固相反应法制备了CaCu3Ti4-xNbxO12(x=0,0.01,0.04,0.08,0.2)陶瓷,样品在x取值范围内形成了连续固溶体.在40Hz—110MHz频率范围对样品进行了介电频谱分析,实验结果表明,与纯CaCu3Ti4O12不同,含Nb试样除了在频率大于10kHz范围内出现的德拜弛豫 关键词: 巨介电常数 德拜弛豫 阻挡层电容 等效电路  相似文献   

14.
CaCu3Ti4O12陶瓷的微观结构和电学性能   总被引:1,自引:0,他引:1       下载免费PDF全文
利用传统的固相反应工艺,在不同的烧结温度下制备了一系列的CaCu3Ti4O12陶瓷样品,考察了其微观结构以及介电和复阻抗方面的电学性质.研究发现这些样品在微观结构方面可分为三种类型,高介电性与微观结构有着密切的关联性.室温下,样品的低频介电常数随陶瓷晶粒尺寸的增大而提高.随着测试温度的升高,不同微观结构类型的样品呈现出不同的电学性质的变化,但其中也存在着一些相同的特征.高温下,介电频谱呈现出一个低频介电响应和两个类Debye型弛豫色散,复阻抗谱呈现出三个Cole-Cole半圆弧.将实验上观测到的电学性质的起因归于陶瓷多晶微结构中的晶畴、晶界和晶粒内的缺陷.  相似文献   

15.
The CaCu3Ti4O12/SiO2/CaCu3Ti4O12 (CCTO/SiO2/CCTO) multilayered films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition method. It has been demonstrated that the dielectric loss and the leakage current density were significantly reduced with the increase of the SiO2 layer thickness, accompanied with a decrease of the dielectric constant. The CCTO film with a 20 nm SiO2 layer showed a dielectric loss of 0.065 at 100 kHz and the leakage current density of 6×10−7 A/cm2 at 100 kV/cm, which were much lower than those of the single layer CCTO films. The improvement of the electric properties is ascribed to two reasons: one is the improved crystallinity; the other is the reduced free carriers in the multilayered films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号