首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chemical physics》1987,113(1):1-18
The complete valence shall binding energy spectrum (10–50 eV) of Cl2 has been determined using electron momentum (binary (e,2e)) spectroscopy. The inner valence region, corresponding to 4σu and 4σg ionization, has been measured for the first time and shows extensive splitting of the ionization strength due to electron correlation effects. These measurements are compared with the results of many-body calculations using Green function and CI methods employing unpolarised as well as polarised wavefunctions. Momentum distributions, measured in both the outer and inner valence regions, are compared with calculations using a range of unpolarised and polarised wavefunctions. Computed orbital density maps in momentum and position space for oriented Cl2 molecules are discussed in comparison with the measured and calculated spherically averaged momentum distributions.  相似文献   

2.
Valence-shell binding energy spectra and momentum distributions of CS2 have been measured using non-coplanar symmetric binary (e,2e) spectroscopy. The present measurements are compared with previously published binding energy spectra calculated using the many body 2ph-TDA Green's function (GF) method and the symmetry-adapted cluster configuration-interaction (SAC CI) method. The measured and the calculated binding energy spectra both show extensive population splittings particularly above 20 eV, confirming a significant breakdown of independent particle ionization picture. A relatively strong-outer valence many-body state at 17.0 eV is shown to be satellite of the (2π0)?1 state, in accord with earlier conclusions of photoelectron studies. Momentum distributions measured at several carefully chosen binding energies are compared with the corresponding molecular orbital momentum distributions calculated using small and extended gaussian basis sets. The good qualitative agreement between momentum distributions measured in the inner-valence region wth theoretical 4σm and 5σg orbital momentum distributions confirms the qualitative predictions of satellite parentages by GF and SAC CI calculations. Momentum and position density contour maps of individual orbitals are used to interpret the shapes and atomic characters of the experimental momentum distributions. Momentum densities of the valence orbitals of CS2 are compared with those of the respective valence isoelectronic species CO2  相似文献   

3.
4.
A method for the use of natural orbital iterations in limited CI calculations is discussed. This method is then applied to the ground X2II state of the nitric oxide molecule at its experimental equilibrium internuclear separation to yield the total energy, dipole moment, spin densities at each nucleus, and approximate natural spin orbitals for this molecule.  相似文献   

5.
Relaxed orbital binding energies of electrons in zinc and cadmium are calculated using a relativistic local density functional theory. The discrepancy between our calculated binding energies and those from gas phase experimental data are attributed to inhomogeniety and many body effects.  相似文献   

6.
Approximate molecular calculations via standard Kohn-Sham density functional theory are exactly reproduced by performing self-consistent calculations on isolated fragments via partition density functional theory [P. Elliott, K. Burke, M. H. Cohen, and A. Wasserman, Phys. Rev. A 82, 024501 (2010)]. We illustrate this with the binding curves of small diatomic molecules. We find that partition energies are in all cases qualitatively similar and numerically close to actual binding energies. We discuss qualitative features of the associated partition potentials.  相似文献   

7.
A direct-current glow discharge is used to excite flowing mixtures of NO/He and NO/N2. A strongly vibration-vibration pumped vibrational population distribution over the states NO(X 2Π, υ = 1) to NO(X2Π, υ = 15) is measured by infrared emission spectroscopy. Measured population distributions are consistent with results calculated from earlier measurements of V-V and V-T,R rates.  相似文献   

8.
《Chemical physics》1987,113(2):251-263
Fluoromethane (CH3F) has been studied by binary (e,2e) coincidence spectroscopy at 1200 eV using non-coplanar symmetric kinematics. Separation energy spectra have been determined in the energy range up to 50 eV at azimuthal angles of 0° and 9°. The separation energy spectra and electron momentum distributions measured for the valence orbitals of CH3F and CH3Cl are compared with the results of calculations employing SCF wavefunctions and outer valence as well as extended 2ph—TDA Green function methods. Electron density and momentum density maps have been generated for all valence orbitals of both molecules using the SCF wavefunctions and are used to explain differences in the bonding properties of the halomethanes investigated here.  相似文献   

9.
An extensive study, throughout the valence region, of the electronic structure, ionization spectrum, and electron momentum distributions of ethanol is presented, on the ground of a model that focuses on a mixture of the gauche and anti conformers in their energy minimum form, using weight coefficients obtained from thermostatistical calculations that account for the influence of hindered rotations. The analysis is based on accurate calculations of valence one-electron and shakeup ionization energies and of the related Dyson orbitals, using one-particle Green's Function (1p-GF) theory in conjunction with the so-called third-order Algebraic Diagrammatic Construction scheme [ADC(3)]. The confrontation against available UPS (HeI) measurements indicates the presence in the spectral bands of significant conformational fingerprints at outer-valence ionization energies ranging from approximately 14 to approximately 18 eV. The shakeup onset is located at approximately 24 eV, and a shoulder at approximately 14.5 eV in the He I spectrum can be specifically ascribed to the minor anti (C(s)) conformer fraction. Thermally and spherically averaged Dyson orbital momentum distributions are computed for seven resolvable bands in model (e, 2e) ionization spectra at an electron impact energy of 1.2 keV. A comparison is made with results obtained from standard (B3LYP) Kohn-Sham orbitals and EMS measurements employing a high-resolution spectrometer of the third generation. The analysis is qualitatively in line with experiment and reveals a tremendously strong influence of the molecular conformation on the outermost electron momentum distributions. Quantitatively significant discrepancies with experiment can nonetheless be tentatively ascribed to strong dynamical disorder in the gas phase molecular structure.  相似文献   

10.
Summary Hartree-Fock calculations with the 6–31G* basis have been performed to investigate the structure and Li+ binding energies of the complexes between Li+ and pyridine, diazines, triazines and tetrazines. Structures have been fully optimized at the 3–21G level. As for azole-Li+ and methyldiazole-Li+ complexes, a topological analysis of the Laplacian of the electronic charge density reveals that the azine-Li+ is a typical closed-shell interaction and that the stabilization of the complex is mainly electrostatic. BSSE is quite significant, specially for Li+-bridging complexes. The correlation between calculated Li+ binding energies and proton affinities follows two different linear relationships, one for those cases where Li+ is singly coordinated and a different one for those cases in which an additional three-membered ring is formed. The enhanced stability of these particular conformations explains why while polyazines are less basic than pyridine when the reference acid is a proton; pyridazine and 1,2,4 triazine are more basic than pyridine when the reference acid is Li+. The effect on Li+ binding energies of systematic nitrogen substitution roughly follows an additive model.  相似文献   

11.
Electronic momentum distributions and Compton profiles have been calculated from minimum basis set SCF wavefunctions for H2O, H2O2, CO, CO2 and H2CO. Radial distributions and profiles have also been estimated for these molecules from localized molecular orbitals. The results suggest that (a) the height of the Compton peak, <p?1>, may be as sensitive to the effects of chemical bonding as the kinetic energy, <p2>/2, and that (b) the virial theorem may provide a more useful criterion than energy minimization in assessing the accuracy of calculated bonding effects and Compton profiles.  相似文献   

12.
The X-ray photoelectron spectra of some quinazolin-2(1H)-ones IIa,b , show only one relatively symmetrical line in the N1s binding-energy region, where as the corresponding dehydrogenated products IIIa,b and the pyrimidin-2-(1H)-ones Va,b revealed two well-resolved spectral lines with an energy difference of more than 1 eV. However, compounds IIc and IIIc gave only one broad unsymmetrical line. Quantum mechanical calculations on compounds IIa and IIIa as well as analogues IIc and IIIc supported the experimental findings.  相似文献   

13.
Valence Orbital Ionization Energies (VOIEs) are computed from Average Configuration Energies for the elements Sr through to In. VOIEs for a specific configuration are given in the form VOIE (q) = C 2 q 2 + C 1 q + C 0 where q is the atomic excess charge.  相似文献   

14.
The outer valence orbital momentum distributions of CO2 have been reinvestigated using a high momentum resolution (0.1 ao?1 fwhm) binary (e,2e) spectrometer operated at 1200 eV impact energy under the non-coplanar symmetric scattering condition. Generally good agreement of the measured momentum distributions with theoretical momentum distributions calculated using literature SCF double-zeta quality wavefunctions has been obtained for the 1πg, (1πu + 3σu) and 4σg orbitals. Although there is a reasonable agreement of the measured momentum distributions with earlier low momentum resolution (0.4 ao?1 fwhm) non-coplanar measurements at 400 eV impact energy reported by Cook and Brion, given the large differences in the momentum resolutions much more definitive results are obtained in the present study. In particular, the significantly higher momentum resolution clearly shows the mixed s-p character of the 4σg orbital. The present study also gives a much better agreement with theory in the case of the 4σg momentum distribution. For each orbital the calculated and where possible the experimentally determined spherically averaged momentum distributions are compared and contrasted with their respective two-dimensional momentum and position density maps. These together with three-dimensional surface plots at selected constant density values of the four outermost orbitals are used to provide a detailed comparison of momentum-space bonding and orbital properties with their more familiar position-space counterparts in the CO2 triatomic molecule. The calculated momentum-space density contour maps of the core orbitals exhibit rather large density oscillations and the feasibility of future experiments is discussed.  相似文献   

15.
The valence shell electronic structure of NH3 is studied in an (e,2e) experiment with symmetric non-coplanar geometry. The momentum distributions obtained for the separate orbitals are compared with those calculated from several approximate wavefunctions. The 3a1 distribution is found to be particularly sensitive to the form of the wavefunction.  相似文献   

16.
The binding energy spectra (10–46 eV) and momentum distributions of the valence orbitals of H2O have been measured using a new high-sensitivity binary (e,2e) electron spectrometer employing position-sensitive detectors. The binding energy spectrum shows a previously unreported feature at = 27 eV which is shown to be associated with the (2a1)?1 ionization process. The region between 25 and 46 eV is compared with previous (e,2e) and X-ray photoelectron measurements as well as with several existing and new many-body calculations indicating a splitting of the 2a1 ionization pole strength. In addition the separate momentum distributions of the three outer valence orbitals of H2O have been obtained from deconvoluted binding energy spectra run at a series of azimuthal angles. The results, which show considerably improved signal-to-noise ratio over earlier measurements using single-channel instrumentation are compared with spherically averaged momentum distributions calculated with a variety of wavefunctions.  相似文献   

17.
The binding energies of the p-, m-, and o-difluorobenzene-H(2)O complexes have been measured by velocity map ion imaging to be 922+/-10, 945+/-10, and 891+/-4 cm(-1), respectively. The lack of variation provides circumstantial evidence for water binding to the three isomers via the same interaction, viz. an in-plane O-H...F hydrogen bond to one of the fluorine atoms on the ring, with a second, weaker interaction of the water O atom with an ortho hydrogen, as determined previously for the p-difluorobenzene-H(2)O complex [Kang et al., J. Phys. Chem. A 109, 767 (2005)]. The ground state binding energies for the difluorobenzene-H(2)O complexes are approximately 5%-11% larger than that for benzene-H(2)O, where binding occurs to the pi electrons out-of-plane. However, in the S(1) state the binding energies of the o- and p-difluorobenzene-H(2)O complexes are smaller than the benzene-H(2)O value, raising an interesting question about whether the geometry at the global energy minimum remains in-plane in the excited electronic states of these two complexes. Recoil energy distributions for dissociation of p-difluorobenzene-H(2)O have been measured from the 3(1), 5(2), and 3(1)5(1) levels of the excited electronic state. These levels are 490, 880, and 1304 cm(-1), respectively, above the dissociation threshold. Within the experimental uncertainty, the recoil energy distributions are the same for dissociation from these three states, with average recoil energies of approximately 100 cm(-1). These recoil energies are 60% larger than was observed for the dissociation of p-difluorobenzene-Ar, which is a substantially smaller increase than the 400% seen in a comparable study of dissociation within the triplet state for pyrazine-Ar, -H(2)O complexes. The majority of the available energy is partitioned into vibration and rotation of the fragments.  相似文献   

18.
Intramolecular interactions between fragments of L ‐phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L ‐phenylalanine, benzene and L ‐alanine are studied using density functional theory methods. While fully resolved experimental PES of L ‐phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e1g and 1a2u orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L ‐phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14‐20 eV, rather than outside of this region. This study presents a competent orbital based fragments‐in‐molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D‐PDF technique. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

19.
《Chemical physics letters》1986,126(5):441-446
The first molecular orbital calculations of infrared transition intensities using adiabatic non-Born-Oppenheimer vibronic coupling expressions for the dipole momentum operator are reported. The calculated dipole momentum intensities for the CH stretching modes in three deuterated alanine isotopomers agree favorably with those calculated from conventional dipole length expressions.  相似文献   

20.
Ab initio multireference single- and double-excitation configuration interaction (MRD-CI) calculations are carried out to study the interactions of positrons with the members of the alkali hydride class of molecules. A new computer program has been constructed for this purpose that makes use of the Table-Direct-CI method for construction of the required Hamiltonian matrixes and electronic/positronic wave functions. The calculations indicate that the binding energy (positron affinity PA) of a single positron to these systems increases by an increment of 0.2-0.3 eV as the atomic number of the alkali atom is increased. It is found that the positron prefers a location in the more electronegative regions of such molecules, similarly as has been found in earlier calculations for the urea and acetone molecules. The positron orbital itself possesses a diffuse charge distribution with relatively small expectation values of the kinetic energy in all four systems considered. Each of the four positronic molecules is stable with respect to formation of either positronium (Ps) or HPs according to the present calculations. Relatively large changes in the equilibrium bond distance of the hydrides occur as a result of the positron interaction. The importance of bond dipole moments in producing the binding of positrons to molecules is discussed, as well as the role that the electronegativity of the constituent atoms plays in determining the magnitude of the PA for a given system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号