首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We present the results of a time-dependent quantum mechanical investigation using centrifugal sudden approximation in the form of reaction probability as a function of collision energy (E(trans)) in the range 0.3-3.0 eV for a range of total angular momentum (J) values and the excitation function sigma(E(trans)) for the exchange reaction H(-) + H(2) (v = 0, j = 0) --> H(2) + H(-) and its isotopic variants in three dimensions on an accurate ab initio potential energy surface published recently (J. Chem. Phys. 2004, 121, 9343). The excitation function results are shown to be in excellent agreement with those obtained from crossed beam measurements by Zimmer and Linder for H(-) + D(2) collisions for energies below the threshold for electron detachment channel and somewhat larger than the most recent results of Haufler et al. for (H(-), D(2)) and (D(-), H(2)) collisions.  相似文献   

2.
The velocity mapping ion imaging method is applied to the ion-molecule reactions occurring between C(+) and NH(3). The velocity space images are collected over the relative collision energy range from 1.5 to 3.3 eV, allowing both product kinetic energy distributions and angular distributions to be obtained from the data. The charge transfer process appears to be direct, dominated by long-range electron transfer that results in minimal deflection of the products. The product kinetic energy distributions are consistent with a process dominated by energy resonance. The kinetic energy distributions for C-N bond formation appear to scale with the total available energy, providing strong evidence that energy in the [CNH(3)](+) precursor to products is distributed statistically. The angular distributions for C-N bond formation show pronounced forward-backward symmetry, as expected for a complex that resembles a prolate symmetric top decaying along its symmetry axis.  相似文献   

3.
Using an analytical potential energy surface previously developed by our group, namely PES-2002, we analyzed the gas-phase reaction between a hydrogen atom and perdeuterated methane. We studied the effect of quasiclassical trajectory (QCT) and reduced dimensionality quantum-scattering (QM) calculations, with their respective limitations, on CD3 product angular distributions in the collision energy range 16.1-46.1 kcal x mol(-1). It was found that at low collision energy, 16.1 kcal x mol(-1), both the QCT and QM calculations yielded forward scattered CD3 products, i.e., a rebound mechanism. However, at high energies only the QM calculations on the PES-2002 surface reproduced the angular scattering found experimentally.  相似文献   

4.
We present global potential energy surfaces for the three lowest triplet states in O(3P)+H2O(X1A1) collisions and present results of classical dynamics calculations on the O(3P)+H2O(X1A1)-->OH(X2pi)+OH(X2pi) reaction using these surfaces. The surfaces are spline-based fits of approximately 20,000 fixed geometry ab initio calculations at the complete-active-space self-consistent field+second-order perturbation theory (CASSCF+MP2) level with a O(4s3p2d1f)/H(3s2p) one electron basis set. Computed rate constants compare well to measurements in the 1000-2500 K range using these surfaces. We also compute the total, rovibrationally resolved, and differential angular cross sections at fixed collision velocities from near threshold at approximately 4 km s(-1) (16.9 kcal mol(-1) collision energy) to 11 km s(-1) (122.5 kcal mol(-1) collision energy), and we compare these computed cross sections to available space-based and laboratory data. A major finding of the present work is that above approximately 40 kcal mol(-1) collision energy rovibrationally excited OH(X2pi) products are a significant and perhaps dominant contributor to the observed 1-5 micro spectral emission from O(3P)+H2O(X1A1) collisions. Another important result is that OH(X2pi) products are formed in two distinct rovibrational distributions. The "active" OH products are formed with the reagent O atom, and their rovibrational distributions are extremely hot. The remaining "spectator" OH is relatively rovibrationally cold. For the active OH, rotational energy is dominant at all collision velocities, but the opposite holds for the spectator OH. Summed over both OH products, below approximately 50 kcal mol(-1) collision energy, vibration dominates the OH internal energy, and above approximately 50 kcal mol(-1) rotation is greater than vibrational energy. As the collision energy increases, energy is diverted from vibration to mostly translational energy. We note that the present fitted surfaces can also be used to investigate direct collisional excitation of H2O(X1A1) by O(3P) and also OH(X2pi)+OH(X2pi) collisions.  相似文献   

5.
《Chemical physics》1986,104(3):429-434
The rotational distribution of the product BaO of the crossed molecular beam reaction of Ba with SO2 was studied with interest in its dependence on collision energy. The distribution was probed by laser-induced fluorescence at collision energies ranging from 1.2 to 7.2 kcal/mol. The rotational excitation was found to increase very slowly with collision energy. The observed distribution was compared with calculations based on the phase space theory and the transition state theory. As a result, the phase space theory reproduced the observed distribution only at low collision energy, while the transition state theory reproduced it satisfactorily over a wide range of collision energy. This feature was interpreted in terms of the angular momentum restriction involved in the reaction. The present result was consistent with the angular distribution and recoil velocity spectrum study.  相似文献   

6.
In this paper we present the relative differential cross sections for collisions of several negative halogen ions with Na and K. The measurements have been carried out in two separate experiments with energy ranges of 5–150 eV and 500–1000 eV and angular ranges of 0-35° and 0-0.3°, respectively. It is shown that in both of these experiments elastic scattering is the dominant process. No significant inelastic contribution to the differetial cross section, especially no electron detachment, has been observed. The measured differential cross sections are used to obtain information on the anion intermolecular potentials. Comparison of these potentials with the potentials of the neutral molecules shows that all systems investigated have a positive electron affinity over a wide range of internuclear distances. An approximately linear relationship between the dipole moments and the electron affinities is obtained for the halides of the specific alkalis.  相似文献   

7.
A mixed beam of hyperthermal N atoms and N(2) molecules was scattered from the N-covered Ag(111) surface held at 300 K. The angular distribution of scattered N atoms is very broad. In contrast, N(2) molecules exhibit a sharp angular distribution. Taking into account the relative mass ratio, N loses more energy at the surface than N(2). In terms of energy loss, the atoms approximately follow the binary collision model while the molecules do not. Instead, the energy curves of scattered N(2) are more comparable to the parallel momentum conservation model for near specular outgoing angles (40°-65°). For both atoms and molecules the angle-resolved intensity and final energy curves are very similar to those from the bare surface. However, the N-covered surface yields non-negligible N(2) intensity for a broad range of outgoing angles, including along the surface normal. This was not the case from the clean surface, where the measured intensity distribution was confined to the narrower angular range indicated above. Backscattering and direct abstraction reactions are evaluated as possible origins of this additional N(2) signal. Of these, an abstraction mechanism appears to be the most consistent with the measured data.  相似文献   

8.
First quasi-classical trajectory calculations have been carried out for the S((3)P) + OH(X?(2)Π) → SO(X?(3)Σ(-)) + H((2)S) reaction on an ab initio global potential energy surface for the ground electronic state, X?(2)A', of HSO. Cross sections, computed for collision energies up to 1 eV, show no energy threshold and decrease with the increasing collision energy. Rate constants have been calculated in the 5-500 K temperature range. The thermal rate constant is in good agreement with approximate quantum results, while a disagreement is found at 298 K with the experimental data. Product energy distributions have also been reported at four collision energies from 0.001 to 0.5 eV. The shapes of the rovibrational and angular distributions suggest the formation of an intermediate complex that is more and more long-lived as the collision energy increases.  相似文献   

9.
The stereodynamics and mechanism of the F + HD(v = 0, j = 1) → HF (DF) + D (H) reactions have been thoroughly analysed at collision energies in the 0-160 meV range. Specifically, this study is focused on (i) the comparison between the stereodynamics of the collisions leading to HF and DF formation, and (ii) the stereodynamical fingerprints of the resonance that occurs at low collision energies in the HF channel and whose manifestation in the total cross section is greatly diminished for initial j > 0. While previous studies were limited to the analysis of integral cross sections (ICS), differential cross sections (DCS) and reaction probabilities, in the present work we have included the analysis of vectorial quantities such as the direction of the initial rotational angular momentum and internuclear axis, and their effect on reactivity. In particular, polarisation parameters (PP) and polarisation dependent differential cross sections (PDDCS), quantities that describe how the intrinsic HD rotational angular momentum and molecular axis polarisations contribute to reaction, are calculated and examined. The evolution of the PPs with the collision energy differs markedly between the two reaction channels. For the DF channel, the PP values are small and change very little in the energy range in which DF formation is appreciable. In contrast, rapid fluctuations in the magnitude and sign of the PPs are observed in the HF channel at low collision energies in and around the resonance. As the collision energy increases, direct (non-resonant) scattering prevails, and the various quantities are reasonably well accounted for by the QCT calculations, as in the case of the DF channel. The intrinsic directional information has been used to access the extent of control that can be achieved through polarisation of the HD molecule prior to collision. It was found that the same extrinsic preparation leads to very different outcomes on the HF channel DCS when the collision energy is close to the resonance. It is also shown that polarisation of the HD internuclear axis along the initial relative velocity enhances the effect of the resonance and allows its clear identification. Finally, the effect of different extrinsic preparations on the angle-velocity DCS is found to be strong, thus allowing considerable control of product angular distributions.  相似文献   

10.
First accurate quantum mechanical scattering calculations have been carried out for the S((3)P)+OH(X?(2)Π)→SO(X?(3)Σ(-))+H((2)S) reaction using a recent ab initio potential energy surface for the ground electronic state, X?(2)A("), of HSO. Total and state-to-state reaction probabilities for a total angular momentum J=0 have been determined for collision energies up to 0.5 eV. A rate constant has been calculated by means of the J-shifting approach in the 10-400 K temperature range. Vibrational and rotational product distributions show no specific behavior and are consistent with a mixture of direct and indirect reaction mechanisms.  相似文献   

11.
12.
We present the first photoelectron (PE) spectra of polypeptide polyanions. Combining PE spectroscopy and mass spectrometry provides a direct measurement of the stability of the polyanions with respect to electron detachment and of the repulsive energy between excess charges. The second electron affinity of gramicidin was found to amount to 2.35 +/- 0.15 eV, and the value of the repulsive Coulomb barrier was estimated to be 0.5 +/- 0.15 eV. The spectra are interpreted as resulting from a competition between delayed and direct emission.  相似文献   

13.
We report the primary (D-atom) and secondary (H-atom) abstraction dynamics of chlorine atom reaction with butane-1,1,1,4,4,4-d(6). The H- and D-atom abstraction channels were studied over a range of collision energies: 10.4 kcal mol(-1) and 12.9 kcal mol(-1); 5.2 kcal mol(-1) to 12.8 kcal mol(-1), respectively, using crossed molecular beam dc slice ion imaging techniques. Single photon ionization at 157 nm was used to probe the butyl radical products resulting from the H- and D-atom abstraction reactions. These two channels manifest distinct dynamics principally in the translational energy distributions, while the angular distributions are remarkably similar. The reduced translational energy distribution for the primary abstraction showed marked variation with collision energy in the backward direction, while the secondary abstraction showed this variation in the forward direction.  相似文献   

14.
We observe electron emission when vibrationally excited NO molecules with vibrational state v, in the range of 9 < or = v < or =18, are scattered from a Cs-dosed Au surface. The quantum efficiency increases strongly with v, increasing up to 10(-2) electrons per NO (v) collision, a value several orders of magnitude larger than that observed in experiments with similar molecules in the ground vibrational state. The electron emission signal, as a function of v, has a threshold where the vibrational excitation energy slightly exceeds the surface work function. This threshold behavior strongly suggests that we are observing the direct conversion of NO vibrational energy into electron kinetic energy. Several potential mechanisms for the observed electron emission are explored, including (1) vibrational autodetachment, (2) an Auger-type two-electron process, and (3) vibrationally promoted dissociation. The results of this work provide direct evidence for nonadiabatic energy-transfer events associated with large amplitude vibrational motion at metal surfaces.  相似文献   

15.
We have measured fragmentation cross sections of protonated water cluster cations (H(2)O)(n=30-50)H(+) by collision with water molecules. The clusters have well-defined sizes and internal energies. The collision energy has been varied from 0.5 to 300 eV. We also performed the same measurements on deuterated water clusters (D(2)O)(n=5-45)D(+) colliding with deuterated water molecules. The main fragmentation channel is shown to be a sequential thermal evaporation of single molecules following an initial transfer of relative kinetic energy into internal energy of the cluster. Unexpectedly, that initial transfer is very low on average, of the order of 1% of collision energy. We evaluate that for direct collisions (i.e., within the hard sphere radius), the probability for observing no fragmentation at all is more than 35%, independently of cluster size and collision energy, over our range of study. Such an effect is well known at higher energies, where it is attributed to electronic effects, but has been reported only in a theoretical study of the collision of helium atoms with sodium clusters in that energy range, where only vibrational excitation occurs.  相似文献   

16.
The oxidation reaction dynamics of gas-phase molybdenum atoms by oxygen molecules was studied under a crossed-beam condition. The product MoO was detected by a time-of-flight mass spectrometer combined with laser multi-photon ionization. An acceleration lens system designed for the ion-velocity mapping condition, a two-dimensional (2D) detector, and a time-slicing technique were used to obtain the velocity and angular distributions of the products at three collision energies: 10.0, 17.8, and 50.0 kJ/mol. The angular distributions showed forward and backward peaks, whose relative intensities changed by the collision energy. While two peaks had similar intensities at low collision energies, the forward peak became dominant at the highest collision energy, 50 kJ/mol. The product kinetic energy distributions showed a good correlation with the initial collision energies, i.e., almost the same energy as the collision energy appeared as the product kinetic energy. These results suggested that the reaction proceeds via an intermediate complex, and the lifetime of the complex becomes shorter than its rotational period at high collision energy.  相似文献   

17.
A detailed investigation of the dynamics of the reactions of ground- and excited-state carbon atoms, C(3P) and C(1D), with acetylene is reported over a wide collision energy range (3.6-49.1 kJ mol-1) using the crossed molecular beam (CMB) scattering technique with electron ionization mass spectrometric detection and time-of-flight (TOF) analysis. We have exploited the capability of (a) generating continuous intense supersonic beams of C(3P, 1D), (b) crossing the two reactant beams at different intersection angles (45, 90, and 135 degrees ) to attain a wide range of collision energies, and (c) tuning the energy of the ionizing electrons to low values (soft ionization) to suppress interferences from dissociative ionization processes. From angular and TOF distribution measurements of products at m/z=37 and 36, the primary reaction products of the C(3P) and C(1D) reactions with C2H2 have been identified to be cyclic (c)-C3H + H, linear (l)-C3H + H, and C3 + H2. From the data analysis, product angular and translational energy distributions in the center-of-mass (CM) system for both the linear and cyclic C3H isomers as well as the C3 product from C(3P) and for l/c-C3H and C3 from C(1D) have been derived as a function of collision energy from 3.6 to 49.1 kJ mol-1. The cyclic/linear C3H ratio and the C3/(C3 + c/l-C3H) branching ratios for the C(3P) reaction have been determined as a function of collision energy. The present findings have been compared with those from previous CMB studies using pulsed beams; here, a marked contrast is noted in the CM angular distributions for both C3H- and C3-forming channels from C(3P) and their trend with collision energy. Consequently, the interpretation of the reaction dynamics derived in the present work contradicts that previously proposed from the pulsed CMB studies. The results have been discussed in the light of the available theoretical information on the relevant triplet and singlet C3H2 ab initio potential energy surfaces (PESs). In particular, the branching ratios for the C(3P) + C2H2 reaction have been compared with the available theoretical predictions (approximate quantum scattering calculations and quasiclassical trajectory calculations on ab initio triplet PESs and, very recent, statistical calculations on ab initio triplet PESs as well as on ab initio triplet/singlet PESs including nonadiabatic effects, that is, intersystem crossing). While the experimental branching ratios have been corroborated by the statistical predictions, strong disagreement has been found with the results of the dynamical calculations. The astrophysical implications of the present results have been noted.  相似文献   

18.
We present state-resolved crossed beam scattering results for the reaction Cl+C2H6-->HCl+C2H5, obtained using direct current slice imaging. The HCl (v=0,J=2) image, recorded at a collision energy of 6.7+/-0.6 kcalmol, shows strongly coupled angular and translational energy distributions revealing features of the reaction not seen in previous studies. The overall distribution is mainly forward scattered with respect to the Cl beam, with a translational energy distribution peaking near the collision energy. However, there is a substantial backscattered contribution that is very different. It shows a sharp peak at 8.0 kcalmol, but extends to much lower energy, implying substantial internal excitation in the ethyl radical coproduct. These results provide new insight into the reaction, and they are considered in terms of alternative models of the dynamics. This work represents the first genuine crossed-beam study in which a product other than the methyl radical was detected with quantum state specificity, showing the promise of the approach generally for high resolution state-resolved reactive scattering.  相似文献   

19.
The chemical dynamics to synthesize the 2,4-pentadiynyl-1 radical, HCCCCCH(2)(X(2)B(1)), via the neutral-neutral reaction of dicarbon with methylacetylene, was examined in a crossed molecular beams experiment at a collision energy of 37.6 kJ mol(-1). The laboratory angular distribution and time-of-flight spectra of the 2,4-pentadiynyl-1 radical and its fragmentation patterns were recorded at m/z = 63-60 and m/z = 51-48. Our findings suggest that the reaction dynamics are indirect and dictated by an initial attack of the dicarbon molecule to the pi electron density of the methylacetylene molecule to form cyclic collision complexes. The latter ultimately rearranged via ring opening to methyldiacetylene, CH(3)-C triple bond C-C triple bond C-H. This structure decomposed via atomic hydrogen emission to the 2,4-pentadiynyl-1 radical; here, the hydrogen atom was found to be emitted almost parallel to the total angular momentum as suggested by the experimentally observed sideways scattering. The overall reaction was strongly exoergic by 182 +/- 10 kJ mol(-1). The identification of the resonance-stabilized free 2,4-pentadiynyl-1 radical represents a solid background for the title reaction to be included into more refined reaction networks modeling the chemistry of circumstellar envelopes and also of sooting combustion flames.  相似文献   

20.
Mabbs R  Surber E  Sanov A 《The Analyst》2003,128(6):765-772
The negative ion photoelectron imaging technique is illustrated using two relatively simple atomic and molecular anion systems, and then applied to the study of a cluster system. Photoelectron images of I- and CS2- at 267 nm and 800 nm respectively are presented. Photoelectron spectra and angular distributions are obtained from the images and the concepts underlying these and their interpretation are outlined. The imaging technique is then applied to (CS2)n - (n = 2-4) cluster anions, for which 400 nm images are presented. Features of these images are highlighted and discussed with reference to solvation effects and structural properties of the cluster anionic moiety. Photoelectron signatures of different forms of the cluster core are discussed. These core structures are anionic monomer units solvated by the remaining n - 1 CS2 molecules or covalent dimer units solvated by the remaining n - 2 molecules. Images of the n = 2 anion at 400, 530 and 800 nm reveal information about the electron detachment processes within the different cluster types and both direct detachment and autodetachment are seen. The direct transitions are seen from clusters with either core type, while autodetachment is only seen from clusters with the covalent dimer core. The imaging work also reveals evidence of a previously unreported electronic transition within the direct detachment band due to the covalently bound core type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号