首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Emission spectra resulting from reaction of “clean” N2(A3 Σu+) with copper atoms were studied using a flowing afterglow apparatus. The population distribution of the Cu states was calculated from the spectrum; it indicates that Cu atoms are excited by nearly resonant energy transfer processes. N2(A,v') + Cu(2S12) → N2(X, v) + Cu* , and that the transfer is most efficient for N2(A,v') → N2(X,v) transitions with large Franck-Condon factors. The preferential energy transfer results in population inversion between some of the Cu states.  相似文献   

2.
A surface-hopping model is applied to near-resonant electronic energy transfer in the NFBi and O2I systems. Multiple surface crossings occur in NFBi at ca. 8 A, corresponding well with measured transfer cross section of 200 A2. A Landau-Zener model yields the temperature dependence of the thermally averaged cross section for the laser pumping reaction, O*2(a1Δ) + I(2P32) → O2(X3Σ?g) + 1*(2P12).  相似文献   

3.
Solvated electron-Na+ pairs, e?,Na+, and 1,1-diphenylethylene reversibly recombine in THF, the capture constant = 3 × 107 M?1 s?1 and the detachment constant = 46 s?1; the e?,Na+, formed by flash-photolysis of Na+,C?(Ph)2CH2CH2C?(Ph2, Na+ survive for 0.1 s in this solvent at ambient temperature without any detectable decay.  相似文献   

4.
The current work aims to thoroughly investigate a variety of facets of the hydrogen‐bond pattern of the Watson–Crick A · T base pair of DNA. It offers a novel mechanism of the origin of the hydrogen‐bonded mispairing in the A · T base pair based on the analysis of the lower‐energy portion of the total potential energy surface of all possible rearrangements of the hydrogen‐bond patterns in this pair, performed at the Hartree–Fock (HF), second‐order Moller–Plesset (MP2)//HF, and B3LYP computational levels in conjunction with 6‐31+G(d) basis set. The specific novelty of this mechanism is that the primary step consists of a single proton transfer along the N3(T)–H … N1 (A) hydrogen bond, thus leading to a transition state that is not directly related to the proton transfer. Rather, it governs the interbase shift within the A · T pair switching the hydrogen‐bonded pattern and then separating the normal A · T pair from the mispairing valley on its potential energy surface. The latter comprises three mismatched base pairs, easily converted to each other because of lower barriers (≈1 kcal/mol) of the corresponding proton transfers. It is demonstrated that, in terms of the Gibbs free energy taken at room T = 298.15 K, the most stable mispair in such valley is predicted to be less stable by 9.7 ± 2 kcal/mol than the Watson–Crick pair, thus implying that the spontaneous point mutations of this type occur as infrequently as to be characterized by an equilibrium constant of 10?6 to 10?9. This estimate falls into the well‐known experimental range of mutation frequency per base pair. The structure of a so‐called “base flipping” of the A · T base pair, originated from a breaking of its N3(T)‐H … N1 (A) hydrogen bond, is also found and reported in the current work for the first time. The transition state A · T ts WC?H , which governs the conversion of the Watson–Crick pair of adenine · thymine into the Hoogsteen one and is related to a breaking of the N6(A)–H … O4(T), is also obtained and its energetical and geometrical features are discussed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

5.
The details and principles of an apparatus built for measurements of fluorescence quantum yields and cascade-free lifetimes of open-shell cations are reported. These rely on the detection of coincidences between energy selected photoelectrons and undispersed photons. The results of such measurements for CO+2, COS+, CS+2 and N2O+ in selected vibrational levels of their excited states are presented. Non-unity fluorescence quantum yields are found for some vibronic levels of CO+2(B), COS+ (A), N2OP+(A) and a non-exponential decay is observed for CS+2(A). The data yield the following values for the radiative lifetimes: CO+2(A) 124 ± 6 ns, CO+2(B) 140 ± 7 ns, COS+(A) 550 ± 50 ns and N2O+(A) 240 ± 12 ns.  相似文献   

6.
Synthesis and properties of C5H5(CO)2Mn-N2H4-Cr(CC)5(1), C5H5(CO)2Mn-N2H2-Cr(CO)5(2) and C5H5(CO)2Mn-N2-Cr(CO)5(3) are reported. (1), (2) and (3) constitute the first series of heteronuclear complexes in which N2, N2H2 and N2H4 are bound to identical metal centers. (1) and (3) are obtained by reacting C5H5Mn(CO)2N2H4 respectively with Cr(CO)5THF, (2) by oxidation of (1). (2) disproportionates by addition of base yielding (3) and H2. The IR Spectrum of (2) allows the assignment of five normal vibrations of the diazene ligand; in the IR spectrum of the deuterated analogue all six normal vibrations can be assigned. The 1H-NMR spectrum of (2) yields the coupling constant of protons on NN double bonds for the first time; the value of 3JHH  23,5 Hz points to a trans structure of (2).  相似文献   

7.
8.
A no-phonon transition has been observed in Cs2NaSmCl6 at 6355 cm?1. This transition is assigned, in octahedral symmetry, as E″u(6H52) → E'u(6F12) and is proposed to be of pure electric quadrupole origin. A comparison between the experimental and calculated intensity and the orientation-dependent intensity of an associated vibronic transition lend support to this assignment.  相似文献   

9.
Micellar n-C16H33N+(CH3)2CH2S+(CH3)2, 2CF3SO3? rapidly methylates bound thiophenoxide ions.  相似文献   

10.
It is shown that some features of intensity distribution among certain vibronic transitions in naphthalene molecule can be understood, when one takes into account adiabatic and nonadiabatic interaction between S1(1B3u), S2(tB2u), and S3(IB3u) electronic states. the vibronic activity of the 6?(b1g) mode in naphthalene-d8 can be explained in terms of an anharmonic coupling with the 7?(b1g) mode. The theoretical analysis suggests reinterpretation of some vibronic transitions.  相似文献   

11.
The reaction H2O+(2B)+NO2(2A) → H2O(1A) + NO2+(1Σ) occurs at near the collision rate constant 1.2 × 10?9 cm3 s?1, in spite of the fact that the reactants produce both a singlet and a triplet state and the products correlate only with the singlet state. This would be expected to yield a statistical weight factor of 14 to be multiplied by the collision rate constant to obtain the maximum charge-tranfer rate constant. The triplet products of the charge transfer are clearly endothermic. The singlet—triplet intersection has not been identified but the available information about the singlet and triplet states of the intermediate protonated nitric acid molecule is discussed. Four other examples of apparent “spin violation” charge-transfer reactions have been noted H2O+ + NO, N2O+ + NO.CO+ + NO and CH4+ + O2.  相似文献   

12.
Nmr and UV studies show that p-dimethylamino-α-bromostyrene, I, undergoes SNl reaction in H2O and HClO4 (kSNl = 6 × 10?1sec.?1 at 25°). The vinyl cation has an extraordinary selectivity for capture by aromatic amines relative to H2O, including I itself to give the dimer II.  相似文献   

13.
The extraction of In(III) from 1M (Na,H)(Cl,ClO4) media with 4-acylpyrazol-5-ones (HL) in toluene at 25°C is described by equilibria In 3+ + 3 HL ? InL3 + 3 H+ (log K = 1.48, 1.03, 0.87 with acyl = benzoyl, lauroyl, 2-thenoyl), InCl 2+ + 2 HL ? InClL2 + 2 H+ (log K = 0.26, ?0.45, ?0.35 respectively) and In3+ + m Cl? ? InClm(3-m)+ (log βm available from literature). The extraction from 1M (Na,H)(Cl,NO3) medium is enhanced by addition of aliquat (TOMA+,Cl?) and the following synergic equilibrium takes place : InCl2 + (TOMA+,Cl?) ? (TOMA+, InCl2L2? (log K = 5.49, 5.25, 5.21 respectively). Cl? of (TOMA+,Cl?) is exchanged by NO3? with the equilibrium constant log K = 1.50. If (TOMA+,Cl?) is replaced by tri-n-octylammonium chloride, the synergic effect is largely reduced (log K = 4.17 with acyl = benzoyl). The extraction from chloride solutions containing ClO4? remains unchanged by addition of ammonium salts.  相似文献   

14.
Cross sections for collision induced dissociation of 0.65 to 3.2 keV I+2(2Πg, υ) ions in I+2(2Πg, υ) + N2(X 1Σ+g, υ = 0) interactions have been determined. Reaction cross sections for I+2(2Π32,g, υ) ions in low vibrational levels vary smoothly from 6 to 10 A2 with increasing kinetic energy. Dissociation cross sections for I+2(2Π12,g, υ) ions are larger than those involving ground state ions. Processes involving highly excited metastable states of I+2 are not observed in this investigation.  相似文献   

15.
The opto-acoustic spectrum of I2 in the presence of various quenching gases — NO, O2, CH3I, SO2, C3HS, N2, and He — has been studied. Of these, the I2/O2 spectrum is quite different due to the near-resonant energy transfer I(2P12) + O2(3Σ) → I(2P32) + O2(IΔ), wherein the resistance of the O2((IΔ) species to collisional relaxation severely distorts the acoustic signal. The photochemical production of excited 2P12 iodine atoms commences at wavelengths considerably longer than the dissociation limit of the I2B? state.  相似文献   

16.
The chemiluminescence produced by the Ba + Cl2 reaction was recorded as a function of He and N2 pressure. A modified Stern-Volmer treatment of competitive electronic quenching of BaCl* and BaCl*2 emission yielded upper limits to the half pressures p12(He) ? 9.0 ± 3 mtorr and p12 (N2) ? 1.1 ± 0.2 mtorr for quenching of BaCl*2 by helium and nitrogen, respectively. A lower limit of the BaCl*2 radiative lifetime is placed at τR ? 100 μ.  相似文献   

17.
Emissions of the hydroperoxyl radical HO2 in the spectral range from 1.0 to 1.6 μm were studied at low and medium resolution. The resolved spectrum shows the expected parallel band structure for the vibrational ovetone transition 2A″ (200-000); in the case of the vibronic transitions 2A′, 000 → 2A″, 000 and 2A′, 001 → 2A″, 000, however, comparison of experimental and computer simulated spectra shows that there also occur intense subbands with ΔK = 0, in addition to the ordinary ΔK = ± 1 transitions. The cause for the break-down of the type-C selection rule is not well known. In the reaction system of ethylene with discharged oxygen vibronic bands could be observed originating from 2A′ levels up to at least ν′3 = 6. The most probable excitation mechanism for these high vibronic levels is the chemiluminescent reaction HCO + O2 (1Δg) → HO2(2A′, 00ν′2) + CO. From the computer fits to the spectra of HO2 and DO2 at medium resolution the origins of the 000-000 bands and the fundamental frequencies ν3′ of the excited 2A′ state could be determined; the values are νo(HO2)=7028 ± 3 cm?1, νo(DO2)=7034 ± 8 cm?, ν3′(HO2)=927 ± 10 cm?, and ν3′(DO2)=940 ± 28 cm?1.  相似文献   

18.
The micellar hydroperoxy surfactant n-C16H33N+(CH3)2CH2CH2OOH, CF3SO3? cleaves p-nitrophenyl acetate ~500 times faster than the corresponding hydroxy surfactant, and ~20,000 times faster than lyate ion at pH 8.  相似文献   

19.
Microwave—optical double resonance signals have been detected in a mass-selected ion-beam spectrometer for 12C16O+. With the optical excitation of fluorescence from the R1 (12) line of the (0,0) band of the A2Π32 ← X2∑ transition of 20350.6 cm?1, the microwave resonances occurred at 118101.8 ± 0.2 MHz and at 117694 ± 2 MHz corresponding to the N= 1, J = 32N = 0, J = 12 and the N = 1, J = 12N = 0, J = 12 transitions.  相似文献   

20.
The extraction of Co(II) with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one ((H)PMBP) and tri-n-octylamine (TOA) is investigated in order to explore the influence of diluents and inorganic anions with synergistic acidic extractant + liquid anion exchanger systems. Although it is proved that the same species [HTOA]+ [Co(PMBP)3]? is extracted from various inorganic media, with toluene as the diluent, the presence of ClO4? SO42? or Cl? anion modifies the distribution of the anions which are associated to (HTOA)+ in the organic phase, leading to different synergistic equilibria; with Cl? or SO42?: CO(PMBP)2 + (HTOA+,PMBP?) ?(HTOA+,Co(PMBP)3? (log K = 6.10) and with ClO4? : Co(PMBP)2 + HPMBP + (HTOA+,ClO4? ? (HTOA+,Co(PMBP)3? + H+ + ClO4? (log K = 2.34) The same synergistic equilibrium is observed for the extraction of Ni(II) from ClO4? medium, with a comparable value of the constant (log K = 2.45). The synergistic effect is cancelled in n-octanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号