首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低自旋d~5络合物ESR参数计算结果证明,最低Kramers简并态,不仅其自旋——轨函与能量矩阵中基函符号一致,而且叩l±能够直接满足Kramers简并态相位关系即(Ψ_1~+)=iΨ_1~-,或者(Ψ_1~-)·=-iΨ_1~+。使用Ψ_1~±推导低自旋d~5络合物的g张量主值表达式时亦不必改变g_(yy)和g_(xx)表达式的符号即直接满足计算条件g_(zz)>g_(yy)>g_(xx)>0。本文提出四十八种g值和符号组合,以及四个定性判据;同时提出并应用实轨函与复轨函的系数关系式证明了实轨函法与复轨函法配位场参数表达式的一致性。  相似文献   

2.
2,3,5,6-Tetrafluorophenylnitren-4-yl (5) was synthesized in argon at 4 K via the photolysis of 2,3,5,6-tetrafluoro-4-iodo-phenyl azide (6). Electron paramagnetic resonance (EPR) spectroscopy allows us to observe triradical 5 in its quartet state with the zero-field splitting (ZFS) parameters |D/hc| = 0.285 and |E/hc| = 0.043 cm-1. The quartet ground state of 5 is in accordance with our previous infrared (IR) spectroscopic investigation, in which the high-spin quartet state, but no low-spin doublet state, of 5 was observed in solid argon at 4 K [Wenk, H. H.; Sander, W. Angew. Chem., Int. Ed. 2002, 41, 2742-2745]. Because annealing of the matrix at temperatures of >10 K results in the rapid recombination of the highly reactive species 5 with I atoms produced during the photolysis of 6, the Curie-Weiss behavior could not be investigated. However, the absence of low-spin states in the IR investigations, as well as the results of ab initio and density functional theory (DFT) calculations, strongly suggest that 5 has a robust quartet ground state that is best-described as an unprecedented sigma,sigma,pi-triradical. The ZFS of 5 has been successfully reproduced by DFT calculations, which furthermore provide qualitative insight into the origin of the observed EPR parameters.  相似文献   

3.
For the first time, the EPR method was used to reveal and study the special features of spin-transition processes between high-spin and low-spin iron(III) complexes with hetarylformazans immobilized on an ion-exchange polymer. An analysis of completely reversible temperature dependences of EPR line positions, widths, and integral intensities in the spectra of high-spin and low-spin complexes allowed four temperature intervals to be identified. These intervals corresponded to preparative periods of spin-transition processes (450–275 K, intervals I and II), their appearance (275–230 K, interval III), and occurrence (230–100 K, interval IV). Local concentrations and spin exchange frequencies in clusters were estimated. Effects related to high-spin complex EPR signal shifts during temperature changes and to the duration of sample storage were revealed. High-spin complexes were found to be very sensitive to external actions, as distinct from very stable low-spin complexes. Experimental EPR observations obtained for ion-exchange polymer satisfied the concept of the nucleation and growth of domains in the spin-transition process.  相似文献   

4.
The structures of the spin-variable iron(III) complexes Fe(4-OCH3-SalEen)2X and FeL′2X (L′ is oxysalicylidene-N′-ethyl-N-ethylenediamine; X = PF6, NO3, and SCN) were examined from their EPR spectra. The coordination units (CUs) of these complexes are a high-symmetry octahedron with a slight tetrahedral distortion or a low-symmetry pseudooctahedron with considerable tetragonal and orthorhombic distortions. When the complex passes from the high-spin to low-spin state, its CU changes. The energy level splittings caused by various types of distortions were estimated from the EPR data. The distortion of the CU depends on the outer-sphere anion. The magnetic resonance parameters of the complexes were analyzed. The fine structure parameters of the EPR spectra of high-spin complexes (the ground-state term is $^6 A_{1_g }$ ) depend on the CU distortion and the covalent bonding. The spin-orbital coupling makes an appreciable second-order contribution to the expressions for the Zeeman coupling parameters of low-spin complexes (the ground-state term is $^2 T_{2_g }$ ).  相似文献   

5.
A series of catecholatoiron(III) complexes, [Fe(III)L(4Cl-cat)]BPh4 (L = (4-MeO)2TPA (1), TPA (2), (4-Cl)2TPA (3), (4-NO2)TPA (4), (4-NO2)2TPA (5); TPA = tris(pyridin-2-ylmethyl)amine; 4Cl-cat = 4-chlorocatecholate), have been characterized by magnetic susceptibility measurements and EPR, 1H NMR, and UV-vis-NIR spectroscopies to clarify the correlation of the spin delocalization on the catecholate ligand with the O2 reactivity as well as the spin-state dependence of the O2 reactivity. EPR spectra in frozen CH3CN at 123 K clearly showed that introduction of electron-withdrawing groups effectively shifts the spin equilibrium from a high-spin to a low-spin state. The effective magnetic moments determined by the Evans method in a CH3CN solution showed that 5 contains 36% of low-spin species at 243 K, while 1-4 are predominantly in a high-spin state. Evaluation of spin delocalization on the 4Cl-cat ligand by paramagnetic 1H NMR shifts revealed that the semiquinonatoiron(II) character is more significant in the low-spin species than in the high-spin species. The logarithm of the reaction rate constant is linearly correlated with the energy gap between the catecholatoiron(III) and semiquinonatoiron(II) states for the high-spin complexes 1-3, although complexes 4 and 5 deviate negatively from linearity. The lower reactivity of the low-spin complex, despite its higher spin density on the catecholate ligand compared with the high-spin analogues, suggests the involvement of the iron(III) center, rather than the catecholate ligand, in the reaction with O2.  相似文献   

6.
New ligand additivity equations, based on the Bursten model, describing dπ orbital energies in square-planar and square–pyramidal complexes are proposed and tested for hypothetical binary Cr(0) and Mn(I) complexes of CO and CNMe. Density functional theory calculations are used to calculate the energies of dπ orbitals of binary octahedral, square–planar, and square–pyramidal d6 complexes of Mn(I) and Cr(0). Combination of the modified equations for unsaturated species with Bursten’s original equations for octahedral species allows for calculation of individual ligand bonding parameters and the separation of σ- and π-bonding effects. The calculated parameters provide interesting insight into the nature of metal–ligand bonding in the species studied. The method of separating σ- and π-bonding effects, applied here to CO and CNMe, is proposed as general method for solution of the Bursten equations for low-spin d6 octahedral systems.  相似文献   

7.
The complexes [Ni(S2C2Me2)2](z) (z = 0, 1-, 2-) have been isolated for the purpose of investigating their electronic structures in a reversible three-member electron-transfer series. Members are interrelated by reversible redox reactions with E(1/2)(0/1-) = -0.15 V and E(1/2)(1-/2-) = -1.05 V versus SCE in acetonitrile. The three complexes have nearly planar structures of idealized D(2)(h) symmetry. As the series is traversed in the reducing direction, Ni-S and C-S bond lengths increase; the chelate ring C-C bond length decreases from the neutral complex to the monoanion and does not change significantly in the dianion. Structural trends are compared with previous results for [Ni(S2C2R2)2)](1-,2-). Following the geometrical changes, values of nu(Ni)(-)(S) and nu(C)(-)(S) decrease, while the value of nu(C)(-)(C) increases with increased reduction. Geometry optimizations at the density functional theory (DFT) level were performed for all members of the series. Geometrical parameters obtained from the calculations are in good agreement with the experimental findings. The 5b(2g) orbital was identified as the LUMO in [Ni(S2C2Me2)2], the SOMO in [Ni(S2C2Me2)2](1-), and the HOMO in [Ni(S2C2Me2)2]2-. Unlike in the situation in the [M(CO)2-(S2C2Me2)2]z series (M = Mo, W; z = 0, 1-, 2-), the apparent contribution from the metal d orbital in the electroactive orbital is not constant. In the present series, the d(xz) contribution increases from 13 to 20 to 39% upon passing from the neutral to the monoanionic to the dianionic complex. Accurate calculation of EPR g-values of [Ni(S2C2Me2)2]1- by DFT serves as a test for the reliability of the electronic structure calculations.  相似文献   

8.
Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2]+, where axial ligands (L) are imidazole (HIm) and tert-butylisocyanide ((t)BuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitals. As for the bis(HIm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(HIm) complexes. Since these complexes adopt the (d(xy))2(d(xz), d(yz))3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dpi orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3e(g)-like orbitals. A fairly small substituent effect is understandable because the 3e(g)-like orbitals have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial HIm is replaced by (t)BuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(HIm) complexes. Since the bis((t)BuNC) complexes adopt the (d(xz), d(yz))4(d(xy))1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitals that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (d(xz), d(yz))4(d(xy))1 ground state should take place between the d(xy) and a(2u)-like orbital rather than between the dxy and a(1u)-like orbital, though the latter interaction is symmetry-allowed in saddled D(2d) complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the d(xy) orbital due to a smaller energy gap between the d(xy) and dpi orbitals. In fact, the energy levels of the d(xy) and dpi orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (d(xy))2(d(xz), d(yz))3 ground state despite the coordination of (t)BuNC.  相似文献   

9.
10.
Numerous Mo and W tris(dithiolene) complexes in varying redox states have been prepared and representative examples characterized crystallographically: [M(S(2)C(2)R(2))(3)](z) [M = Mo, R = Ph, z = 0 (1) or 1- (2); M = W, R = Ph, z = 0 (4) or 1- (5); R = CN, z = 2-, M = Mo (3) or W (6)]. Changes in dithiolene C-S and C-C bond lengths for 1 versus 2 and 4 versus 5 are indicative of ligand reduction. Trigonal twist angles (Θ) and dithiolene fold angles (α) increase and decrease, respectively, for 2 versus 1, 5 versus 4. Cyclic voltammetry reveals generally two reversible couples corresponding to 0/1- and 1-/2- reductions. The electronic structures of monoanionic molybdenum tris(dithiolene) complexes have been analyzed by multifrequency (S-, X-, Q-band) EPR spectroscopy. Spin-Hamiltonian parameters afforded by spectral simulation for each complex demonstrate the existence of two distinctive electronic structure types. The first is [Mo(IV)((A)L(3)(5-?))](1-) ((A)L = olefinic dithiolene, type A), which has the unpaired electron restricted to the tris(dithiolene) unit and is characterized by isotropic g-values and small molybdenum superhyperfine coupling. The second is formulated as [Mo(V)((B)L(3)(6-))](1-) ((B)L = aromatic dithiolene, type B) with spectra distinguished by a prominent g-anisotropy and hyperfine coupling consistent with the (d(z(2)))(1) paramagnet. The electronic structure disparity is also manifested in their electronic absorption spectra. The compound [W(bdt)(3)](1-) exhibits spin-Hamiltonian parameters similar to those of [Mo(bdt)(3)](1-) and thus is formulated as [W(V)((B)L(3)(6-))](1-). The EPR spectra of [W((A)L(3))](1-) display spin-Hamiltonian parameters that suggest their electronic structure is best represented by two resonance forms {[W(IV)((A)L(3)(5-?))](1-) ? [W(V)((A)L(3)(6-))](1-)}. The contrast with the corresponding [Mo(IV)((A)L(3)(5-?))](1-) complexes highlights tungsten's preference for higher oxidation states.  相似文献   

11.
A series of axially ligated complexes of iron(III) octamethyltetraphenylporphyrin, (OMTPP)Fe(III), octaethyltetraphenylporphyrin, (OETPP)Fe(III), its perfluorinated phenyl analogue, (F(20)OETPP)Fe(III), and tetra-(beta,beta'-tetramethylene)tetraphenylporphyrin, (TC(6)TPP)Fe(III), have been prepared and characterized by (1)H NMR spectroscopy: chloride, perchlorate, bis-4-(dimethylamino)pyridine, bis-1-methylimidazole, and bis-cyanide. Complete spectral assignments have been made using 1D and 2D techniques. The temperature dependences of the proton resonances of the complexes show significant deviations from simple Curie behavior and evidence of ligand exchange, ligand rotation, and porphyrin ring inversion at ambient temperatures. At temperatures below the point where dynamics effects contribute, the temperature dependences of the proton chemical shifts of the complexes could be fit to an expanded version of the Curie law using a temperature-dependent fitting program developed in our laboratory that includes consideration of a thermally accessible excited state. The results show that, although the ground state differs for various axial ligand complexes and is usually fully consistent with that observed by EPR spectroscopy at 4.2 K, the excited state often has S = (3)/(2) (or S = (5)/(2) in the cases where the ground state has S = (3)/(2)). The EPR spectra (4.2 K) of bis-4-(dimethylamino)pyridine and bis-1-methylimidazole complexes show "large-g(max)" signals with g(max) = 3.20 and 3.12, respectively, and the latter also shows a normal rhombic EPR signal, indicating the presence of low-spin (LS) (d(xy))(2)(d(xz),d(yz))(3) ground states for both. The bis-cyanide complex also yields a large-g(max) EPR spectrum with g = 3.49 and other features that could suggest that some molecules have the (d(xz),d(yz))(4)(d(xy))(1) ground state. The EPR spectra of all five-coordinate chloride complexes have characteristic features of predominantly S = (5)/(2) ground-state systems with admixture of 1-10% of S = (3)/(2) character.  相似文献   

12.
The new bis-iminopyrrolyl five-coordinate Co(II) complexes [Co(kappa (2) N, N'-NC 4H 3C(R)N-2,6- (i)Pr 2C 6H 3) 2(PMe 3)] (R = H 3a; Me 3b) were synthesized in high yields (ca. 80-90%), using THF and diethyl ether as solvents, respectively, by (a) treatment of CoCl 2(PMe 3) 2 with the corresponding iminopyrrolyl Na salts ( Ie or If) or (b) reaction of anhydrous CoCl 2 and PMe 3 with Ie or If. A third route was tested, involving the addition of excesses of PMe 3 to the complexes [Co(kappa (2) N, N'-NC 4H 3C(R)N-2,6- (i)Pr 2C 6H 3) 2] (R = H 1e; Me 1f), which was only successful for the synthesis of 3a, in lower yields (ca. 30%). The synthesis of 3b in THF was unfruitful because of the kinetic competition of the solvent, giving rise to mixtures of 1f and its coordinated THF adduct 4b. The synthesis of the new bis-iminopyrrolyl five-coordinate Co(II) complexes [Co(kappa (2) N, N'-NC 4H 3C(R)N-2,6- (i)Pr 2C 6H 3) 2(THF)] (R = H 4a; Me 4b) were carried out in high yields (ca. 80-90%) by the reaction of CoCl 2(THF) 1.5 with the corresponding iminopyrrolyl Na salt. All the compounds have been characterized by X-ray diffraction, with 3a and 3b showing axially compressed trigonal bipyramidal geometry (with the PMe 3 ligand lying on the equatorial plane), whereas complexes 4a and 4b exhibit distorted square pyramidal geometries with the THF molecule occupying the axial position. Complex 4a shows clearly a compressed geometry, but for complex 4b, two polymorphs were characterized, exhibiting molecules with different Co-O (THF) bond lengths, one of them being compatible with an elongated form. Magnetic measurements either in the solid or in the liquid phases indicate that complexes 3a and 3b have low-spin ground states ( S = 1/2). In toluene solution, the geometry is fully confirmed by EPR data, which further indicates a d x (2) - y (2) /d xy ground state. However, compounds 4a and 4b behave unusually because they show magnetic moments that are compatible with high-spin ground states ( S = 3/2) in the solid state, but conform to low-spin ground states ( S = 1/2) when both complexes are dissolved in toluene solutions. The low-spin ground states in toluene solution are confirmed by EPR spectroscopy, which further supports, for complexes 4a and 4b, an axially elongated square pyramidal geometry and a d z (2) ground state. Thus the change in the ground-state and, consequently, in the geometry of complexes 4a and 4b from solid state to toluene solution might be a consequence of the elongation of the Co-O(THF) bond length. DFT studies performed on complexes 3 and 4 corroborate their different structure and magnetic behaviors and verify, for the latter complexes, the structural differences observed in the solid state and in toluene solution.  相似文献   

13.
Crystalline samples of four low-spin Fe(III) octaalkyltetraphenylporphyrinate and two low-spin Fe(III) tetramesitylporphyrinate complexes, all of which are models of the bis-histidine-coordinated cytochromes of mitochondrial complexes II, III, and IV and chloroplast complex b(6)f, and whose molecular structures and EPR spectra have been reported previously, have been investigated in detail by M?ssbauer spectroscopy. The six complexes and the dihedral angles between axial ligand planes of each are [(TMP)Fe(1-MeIm)(2)]ClO(4) (0 degree), paral-[(OMTPP)Fe(1-MeIm)(2)]Cl (19.5 degrees), paral-[(TMP)Fe(5-MeHIm)(2)]ClO(4) (26 degrees, 30 degrees for two molecules in the unit cell whose EPR spectra overlap), [(OETPP)Fe(4-Me(2)NPy)(2)]Cl (70 degrees), perp-[(OETPP)Fe(1-MeIm)(2)]Cl (73 degrees), and perp-[(OMTPP)Fe(1-MeIm)(2)]Cl (90 degrees). Of these, the first three have been shown to exhibit normal rhombic EPR spectra, each with three clearly resolved g-values, while the last three have been shown to exhibit "large g(max)" EPR spectra at 4.2 K. It is found that the hyperfine coupling constants of the complexes are consistent with those reported previously for low-spin ferriheme systems, with the largest-magnitude hyperfine coupling constant, A(zz), being considerably smaller for the "parallel" complexes (400-540 kG) than for the strictly perpendicular complex (902 kG), A(xx) being negative for all six complexes, and A(zz) and A(xx) being of similar magnitude for the "parallel" complexes (for example, for [(TMP)Fe(1-MeIm)(2)]Cl, A(zz) = 400 kG, A(xx) = -400 kG). In all cases, A(yy) is small but difficult to estimate with accuracy. With results for six structurally characterized model systems, we find for the first time qualitative correlations of g(zz), A(zz), and DeltaE(Q) with axial ligand plane dihedral angle Deltavarphi.  相似文献   

14.
Interpretation of the EPR parameters of low-spin nitrosyl complexes of d 5 transition metal ions was illustrated with a pentacyanonitrosyl complex of Cr+. The bond covalence in the antibonding and bonding states of this complex was determined from EPR and optical spectroscopic data. The reasons for the observed abnormal value of the Zeeman splitting parameter were analyzed. The contributions to the components of the A and HFC tensors at the N atom of the nitrosyl group were calculated.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 6, 2005, pp. 423–426.Original Russian Text Copyright © 2005 by Murav’ev.  相似文献   

15.
The measurements of rotational spectra and metal-hydrogen bond lengths for molybdenum and tungsten hydride complexes were recently completed in our laboratory. The W-H and Mo-H bond lengths were obtained from high resolution rotational spectra of C5H5Mo(CO)3H, C5H5W(CO)3H, C5H5Mo(CO)3D, and C5H5W(CO)3D. Data for five molybdenum and four tungsten isotopomers were obtained for both the normal and deuterium-substituted species. The asymmetric-top rotational parameters A, B, C, DeltaJ, and deltaJ were determined from the least-squares fits and these results indicate that the structures of these complexes are nearly rigid. The hydrogen bond lengths were determined for both complexes using Kraitchman analyses. The molybdenum-hydrogen bond length for the C5H5Mo(CO)3H complex is rMo-H=1.80(1) A. The tungsten-hydrogen bond length for the C5H5W(CO)3H complex is rW-H=1.79(4) A. Density functional theory (DFT) calculations of the structures were performed to obtain the optimized theoretical structures for C5H5Mo(CO)3H and C5H5W(CO)3H. Results obtained from the DFT calculations are in good agreement with the experimental parameters, and the Mo-H value is in good agreement with previously reported Mo-H bond lengths for similar complexes.  相似文献   

16.
The first example of a microcrystalline powder of a synthetic low-spin (LS) mononuclear Fe(III)(OOH) intermediate has been obtained by the precipitation of the [Fe(III)(L(5) (2))(OOH)](2+) complex at low temperature. The high purity of this thermally unstable powder is revealed by magnetic susceptibility measurements. EPR studies on this complex, in the solid state and also in frozen solution, are reported and reveal the coexistence of two related Fe(III)(OOH) species in both states. We also present a theoretical analysis of the g tensor for LS Fe(III) complexes, based on new perturbation equations. These simple equations provide distortion-energy parameters that are in good agreement with those obtained by a full-diagonalization calculation.  相似文献   

17.
Three octahedral complexes containing a (cis-cyclam)iron(III) moiety and an O,N-coordinated o-iminobenzosemiquinonate pi radical anion have been synthesized and characterized by X-ray crystallography at 100 K: [Fe(cis-cyclam)(L(1-3)(ISQ))](PF(6))(2) (1-3), where (L(1-3)(ISQ)) represents the monoanionic pi radicals derived from one-electron oxidations of the respective dianion of o-imidophenolate(2-), L(1), 2-imido-4,6-di-tert-butylphenolate(2-), L(2), and N-phenyl-2-imido-4,6-di-tert-butylphenolate(2-), L(3). Compounds 1-3 possess an S(t) = 0 ground state, which is attained via strong intramolecular antiferromagnetic exchange coupling between a low-spin central ferric ion (S(Fe) = 1/2) and an o-imino-benzosemiquinonate(1-) pi radical (S(rad) = 1/2). Zero-field M?ssbauer spectra of 1-3 at 80 K confirm the low-spin ferric electron configuration: isomer shift delta = 0.26 mm s(-1) and quadrupole splitting DeltaE(Q) = 1.96 mm s(-1) for 1, 0.28 and 1.93 for 2, and 0.33 and 1.88 for 3. All three complexes undergo a reversible, one-electron reduction of the coordinated o-imino-benzosemiquinonate ligand, yielding an [Fe(III)(cis-cyclam)(L(1-3)(IP))](+) monocation. The monocations of 1 and 2 display very similar rhombic signals in the X-band EPR spectra (g = 2.15, 2.12, and 1.97), indicative of low-spin ferric species. In contast, the monocation of 3 contains a high-spin ferric center (S(Fe) = 5/2) as is deduced from its M?ssbauer and EPR spectra.  相似文献   

18.
The electronic structures of six-coordinate iron(III) octaethylmonoazaporphyrins, [Fe(MAzP)L 2] (+/-) ( 1), have been examined by means of (1)H NMR and EPR spectroscopy to reveal the effect of meso-nitrogen in the porphyrin ring. The complexes carrying axial ligands with strong field strengths such as 1-MeIm, DMAP, CN (-), and (t)BuNC adopt the low-spin state with the (d xy ) (2)(d xz , d yz ) (3) ground state in a wide temperature range where the (1)H NMR and EPR spectra are taken. In contrast, the complexes with much weaker axial ligands, such as 4-CNPy and 3,5-Cl 2Py, exhibit the spin transition from the mainly S = 3/2 at 298 K to the S = 1/2 with the (d xy ) (2)(d xz , d yz ) (3) ground state at 4 K. Only the THF complex has maintained the S = 3/2 throughout the temperature range examined. Thus, the electronic structures of 1 resemble those of the corresponding iron(III) octaethylporphyrins, [Fe(OEP)L 2] (+/-) ( 2). A couple of differences have been observed, however, in the electronic structures of 1 and 2. One of the differences is the electronic ground state in low-spin bis( (t)BuNC) complexes. While [Fe(OEP)( (t)BuNC) 2] (+) adopts the (d xz , d yz ) (4)(d xy ) (1) ground state, like most of the bis( (t)BuNC) complexes reported previously, [Fe(MAzP)( (t)BuNC) 2] (+) has shown the (d xy ) (2)(d xz , d yz ) (3) ground state. Another difference is the spin state of the bis(3,5-Cl 2Py) complexes. While [Fe(OEP)(3,5-Cl 2Py) 2] (+) has maintained the mixed S = 3/2 and 5/2 spin state from 298 to 4 K, [Fe(MAzP)(3,5-Cl 2Py) 2] (+) has shown the spin transition mentioned above. These differences have been ascribed to the narrower N4 cavity and the presence of lower-lying pi* orbital in MAzP as compared with OEP.  相似文献   

19.
Reaction of the monoanionic, pentacoordinate ligand lithium 1,4,8,11-tetraazacyclotetradecane-1-acetate, Li(cyclam-acetate), with FeCl3 yields, upon addition of KPF6, [(cyclam-acetato)FeCl]PF6 (1) as a red microcrystalline solid. Addition of excess NaN3 prior to addition of KPF6 yields the azide derivative [(cyclam-acetato)FeN3]PF6 (2a) as orange microcrystals. The X-ray crystal structure of the azide derivative has been determined as the tetraphenylborate salt (2b). Reaction of 1 with silver triflate yields [(cyclam-acetato)Fe(O3SCF3)]PF6 (3), which partially dissociates triflate in nondried solvents to yield a mixture of triflate and aqua bound species. Each of the iron(III) derivatives is low-spin (d5, S = 1/2) as determined by variable-temperature magnetic susceptibility measurements, M?ssbauer and EPR spectroscopy. The low-spin iron(II) (d6, S = 0) complexes 1red and 2ared have been prepared by electrochemical and chemical methods and have been characterized by M?ssbauer spectroscopy. Photolysis of 2a at 419 nm in frozen acetonitrile yields a nearly colorless species in approximately 80% conversion with an isomer shift delta = -0.04 mm/s and a quadrupole splitting delta EQ = -1.67 mm/s. A spin-Hamiltonian analysis of the magnetic M?ssbauer spectra is consistent with an FeV ion (d3, S = 3/2). The proposed [(cyclam-acetato)FeV=N]+ results from the photooxidation of 2a via heterolytic N-N cleavage of coordinated azide. Photolysis of 2a in acetonitrile solution at -35 degrees C (300 nm) or 20 degrees C (Hg immersion lamp) results primarily in photoreduction via homolytic Fe-Nazide cleavage yielding FeII (d,6 S = 0) with an isomer shift delta = 0.56 mm/s and quadrupole splitting delta EQ = 0.54 mm/s. A minor product containing high-valent iron is suggested by M?ssbauer spectroscopy and is proposed to originate from [((cyclam-acetato)Fe)2(mu-N)]2+ with a mixed-valent (FeIV(mu-N)FeIII))4+S = 1/2 core. Exposure of 3 to a stream of oxygen/ozone at low temperatures (-80 degrees C) in acetone/water results in a single oxidized product with an isomer shift delta = 0.01 mm/s and quadrupole splitting delta EQ = 1.37 mm/s. A spin-Hamiltonian analysis of the magnetic M?ssbauer yields parameters similar to those of compound II of horseradish peroxidase which are consistent with an FeIV=O monomeric complex (S = 1).  相似文献   

20.
The α,β,γ,δ-tetraphenylporphinatocobalt(II) complex is found to exist in two distinct, but interconvertible, polycrystalline forms. The one with a tetragonal crystal symmetry (species B) gives the EPR spectrum which has been attributed to the low-spin electronic configuration of Co(II) ion in an axial crystal field. The other form (species A) having a triclinic crystal symmetry shows no easily detectable EPR signal even at liquid helium temperature.Magnetic susceptibility and magnetization meaurements demonstrated that the complex is paramagnetic in both forms, but the species (A) is characterized by ferromagnetic exchange coupling, while the species (B) behaves as a normal paramagnet.The experimental susceptibility versus 1/T curve can be reproduced quite well by using the Ising method. The g values thus obtained (g| = 5.2,g = 0) can not be explained by a low-spin electronic configuration, but are consistent with a high-spin ground state. Assigning a high-spin state to the species (A), the first such case in Co(II) porphine complexes, can not only explain the absence of EPR signal, but is also supported by the results of X-ray structural analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号