首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The crystal structure and phase transition temperature of [N(C2H5)4]2CuBr4 are studied using X-ray diffraction and differential scanning calorimetry (DSC); measurements revealed a tetragonal structure and the two phase transition temperatures TC of 204 K and 255.5 K. The structural geometry near TC is discussed in terms of the chemical shifts for 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups are distinguishable by the 13C NMR spectrum. The molecular motions are discussed in terms of the spin–lattice relaxation times T in the rotating frame for 1H MAS NMR and 13C CP/MAS NMR. The T results reveal that the ethyl groups undergo tumbling motion, and furthermore that the ethyl groups are highly mobile.  相似文献   

2.
We show that for observing high-resolution heteronuclear NMR spectra of anisotropically mobile systems with order parameters less than 0.25, moderate magic-angle spinning (MAS) rates of 11 kHz combined with 1H decoupling at 1–2 kHz are sufficient. Broadband decoupling at this low 1H nutation frequency is achieved by composite pulse sequences such as WALTZ-16. We demonstrate this moderate MAS low-power decoupling technique on hydrated POPC lipid membranes, and show that 1 kHz 1H decoupling yields spectra with the same resolution and sensitivity as spectra measured under 50 kHz 1H decoupling when the same acquisition times (50 ms) are used, but the low-power decoupled spectra give higher resolution and sensitivity when longer acquisition times (>150 ms) are used, which are not possible with high-power decoupling. The limits of validity of this approach are explored for a range of spinning rates and molecular mobilities using more rigid membrane systems such as POPC/cholesterol mixed bilayers. Finally, we show 15N and 13C spectra of a uniaxially diffusing membrane peptide assembly, the influenza A M2 transmembrane domain, under 11 kHz MAS and 2 kHz 1H decoupling. The peptide 15N and 13C intensities at low-power decoupling are 70–80% of the high-power decoupled intensities. Therefore, it is possible to study anisotropically mobile lipids and membrane peptides using liquid-state NMR equipment, relatively large rotors, and moderate MAS frequencies.  相似文献   

3.
Magic-angle-spinning (MAS) high-power 1H-decoupled 13C and 31P NMR has been applied to solid biological materials to obtain information about the mechanisms that determine the spectral linewidths. The line broadening in MAS 31P NMR spectra of solid tobacco mosaic virus (TMV) has been investigated by selective saturation and T2 measurements. About 90 Hz stems from homogeneous effects, whereas the inhomogeneous contribution is approximately 100 Hz. The inhomogeneous line broadening is assigned to macroscopic inhomogeneities in the sample and not to variations in the nucleotide bases along the RNA strand in TMV. It is concluded that sample preparation is of vital importance for obtaining well-resolved spectra. Under optimal preparation techniques the isotropic values of the chemical shift of the different 31P sites have been determined to obtain information about the secondary structure of the viral RNA. The chemical shift anisotropy has been determined from the relative intensities of the spinning side bands in the spectra. The chemical shift information is used to make a tentative assignment of the resonance in terms of the three structurally distinguishable phosphate groups in TMV. The origin of the linewidths in MAS NMR has been examined further by 13C NMR of approximately 10% 13C-enriched coat protein of cowpea chlorotic mottle virus, using selective excitation and saturation techniques, as well as measurements of the relaxation times T1γ and T2. The CO resonance in the spectrum is composed of an inhomogeneous and homogeneous part with a total linewidth of 700 Hz. The homogeneous linewidth, contributing with 200 Hz, is found to arise from slow molecular motions in the solid on a millisecond timescale.  相似文献   

4.
High resolution 2D NMR MAS spectra of liposomes, in particular 1H-13C chemical shifts correlations have been obtained on fluid lipid bilayers made of pure phospholipids for several years. We have investigated herein the possibility to obtain high resolution 2D MAS spectra of cholesterol embedded in membranes, i.e. on a rigid molecule whose dynamics is characterized mainly by axial diffusion without internal segmental mobility. The efficiency of various pulse sequences for heteronuclear HETCOR has been compared in terms of resolution, sensitivity and selectivity, using either cross polarization or INEPT for coherence transfer, and with or without MREV-8 homonuclear decoupling during t1. At moderately high spinning speed (9 kHz), a similar resolution is obtained in all cases (0.2 ppm for 1H(3,4), 0.15 ppm for 13C(3,4) cholesterol resonances), while sensitivity increases in the order: INEPT < CP(x4) < CP + MREV. At reduced spinning speed (5 kHz), the homonuclear dipolar coupling between the two geminal protons attached to C(4) gives rise to spinning sidebands from which one can estimate a H-H dipolar coupling of 10 kHz which is in good agreement with the known dynamics of cholesterol in membranes.  相似文献   

5.
Anomalous H/D isotope effects were detected in the 1H MAS NMR spectra of piperidinium p-chlorobenzoate (C5H10NH $_{2}{^{+}}\cdot $ ClC6H4COO???) upon deuterium substitution of hydrogen atoms which form two kinds of N-H?O H-bonds in the crystal; in contrast to these spectra, only slight chemical shifts were recorded in 13C CP/MAS NMR spectra. 2H NMR spectrum of the deuterated sample show quadrupole coupling constants of 148 and 108 kHz, and reveal that there are a few motions contributing to the electric-field modulation of the 2H nucleus. The 1H MAS NMR spectra of piperidinium p-chlrobenzoate-d 16 (C5D10ND $_{2}{^{+}}\cdot $ ClC6D4COO???) and -d 14 (C5D10NH $_{2}{^{+}}\cdot $ ClC6D4COO???) revealed that the change in the envelope is caused by chemical shifts of each signal upon deuteration. Calculations based on the density-functional-theory showed that the N-H distance along the crystallographic a-axis mainly contributes to the anomalous isotope effects on 1H MAS NMR envelopes.  相似文献   

6.
Accurate measurement of δISO, the isotropic part of the NMR chemical shift tensor, is usually difficult for solids. This study suggests that the technique of magic angle sample spinning (MAS), employing single crystals, might be suitable for this purpose. In our 13C CP(cross polarization)/MAS measurements on squaric acid (H2C4O4), single crystals yielded about five-fold narrower line widths than powder samples. The resolution enhancement thus obtained enabled us to measure δISO for all four carbons of squaric acid, and to show that the average O-H distance can serve as an order parameter for the phase transition at 373 K. Additionally, the 13C δISO data suggest that the transition mechanism involves a significant displacive component, in addition to the known order-disorder behavior, thus demonstrating the high potential of the single crystal MAS-NMR methodology for studying the microscopic mechanism of phase transitions.  相似文献   

7.
In this article, we show the potential for utilizing proton-detected heteronuclear single quantum correlation (HSQC) NMR in rigid solids under ultra-fast magic angle spinning (MAS) conditions. The indirect detection of carbon-13 from coupled neighboring hydrogen nuclei provides a sensitivity enhancement of 3- to 4-fold in crystalline amino acids over direct-detected versions. Furthermore, the sensitivity enhancement is shown to be significantly larger for disordered solids that display inhomogeneously broadened carbon-13 spectra. Latrodectus hesperus (Black Widow) dragline silk is given as an example where the sample is mass-limited and the sensitivity enhancement for the proton-detected experiment is 8- to 13-fold. The ultra-fast MAS proton-detected HSQC solid-state NMR technique has the added advantage that no proton homonuclear decoupling is applied during the experiment. Further, well-resolved, indirectly observed carbon-13 spectra can be obtained in some cases without heteronuclear proton decoupling.  相似文献   

8.
One- and two-dimensional static and magic-angle spinning (MAS) exchange NMR experiments for quantifying slow (τc> 1 ms) molecular reorientation dynamics are analyzed, emphasizing the extent to which motional correlation times can be extracteddirectlyfrom the experimental data. The static two-dimensional (2D) exchange NMR experiment provides geometric information, as well as exchange time scales via straightforward and model-free application of Legendre-type orientational autocorrelation functions, particularly for axially symmetric interaction tensors, as often encountered in solid-state2H and13C NMR. Under conditions of MAS, increased sensitivity yields higher signal-to-noise spectra, with concomitant improvement in the precision and speed of correlation time measurements, although at the expense of reduced angular (geometric) resolution. For random jump motions, one-dimensional (1D)exchange-inducedsidebands (EIS)13C NMR and the recently developed ODESSA and time-reverse ODESSA experiments complement the static and MAS two-dimensional exchange NMR experiments by providing faster means of obtaining motional correlation times. For each of these experiments, the correlation time of a dynamic process may be obtained from a simple exponential fit to the integrated peak intensities measured as a function of mixing time. This is demonstrated on polycrystalline dimethylsulfone, where the reorientation rates from EIS, ODESSA, time-reverse ODESSA, and 2D exchange are shown to be equivalent and consistent with literature values. In the analysis, the advantages and limitations of the different methods are compared and discussed.  相似文献   

9.
SBA-15 was utilized as mesoporous support for the dispersion of vanadium phosphate (VPO) compounds. Loading of SBA-15 with VPO compounds was found to be accompanied by decreasing 29Si MAS NMR signals of Q2 (Si(2Si,2OH)) and Q3 (Si(3Si,1OH)) silicon species, which indicates coverage of the mesoporous support by the guest compounds. The 51V MAS NNR spectra of the activated VPO/SBA-15 catalysts consist of patterns typical for the αII- and β-phases of vanadyl orthophosphate. In the 31P MAS NMR spectra of the activated VPO/SBA-15 catalysts, signals of β-, δ-, and αII-VOPO4 phases could be identified. Upon conversion of n-butane-13C4, a strong decrease of the 31P MAS NMR signals characteristic for the δ-VOPO4 phase occurred, while by 13C MAS NMR spectroscopy the formation of maleic anhydride, carbon monoxide, and carbon dioxide was observed. This finding supports the active role of the δ-VOPO4 phase in the selective oxidation of n-butane on VPO/SBA-15 catalysts.  相似文献   

10.
We have employed deuteron nuclear magnetic resonance (NMR) spectroscopy in order to study the dynamics of the deuterated water (D2O) molecules introduced into a perfluorosulfonic acid ionomer Nafion (NR-211) film. According to the 2H NMR spectral analysis, the deuterated water molecules at low temperatures occupied either relatively rigid or mobile sites up to the temperature TM=240 K where all the deuterated water molecules became mobile. The temperature-dependent NMR linewidths sensitively reflected the motional narrowing of the rigid and mobile sites, and the NMR chemical shift reflected significant changes in the hydrogen bonds of the deuterated water. While a slow- to fast-limit motional transition was manifested at TM in the laboratory-frame NMR spin–lattice relaxation, the rotating-frame spin–lattice relaxation indicated no bulk liquid water state down to 200 K.  相似文献   

11.
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25 K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (±5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature 13C NMR data for two biomolecular samples, namely the peptide Aβ14–23 in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin–lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and 13C MAS NMR linewidths are discussed.  相似文献   

12.
Individual polyglycans and their corresponding monomers have been studied separately for several decades. Attention has focused primarily on the modifications of these polyglycans instead of the simple relationship between the polyglycans themselves and their corresponding monomers. Two polyglycans, chitin and chitosan, were examined along with their respective monomeric units, N-acetyl-d-glucosamine (GlcNAc) and (+)d-glucosamine (GlcN) using solid-state proton decoupling Magic Angle Turning (MAT) techniques and X-Ray Powder Diffraction (XRPD). A down-field shift in isotropic 13C chemical shifts was observed for both polymers in Cross Polarization/Magic Angle Spinning (CP/MAS) spectra. An explanation of misleading peak assignments in previous NMR studies for these polyglycans was determined by comparing sideband patterns of the polymers with their corresponding monomers generated in a 2D FIve π REplicated Magic Angle Turning (FIREMAT) experiment processed by Technique for Importing Greater Evolution Resolution (TIGER). Structural changes in the crystalline framework were supported by XRPD diffraction data.  相似文献   

13.
Solid-state nuclear magnetic resonance (NMR) spectroscopy is utilized to study the molecular behavior of 1,10-dibromodecane and 1,11-dibromoundecane in their urea inclusion compounds. The guest dynamics and conformational order are explored by 13C cross polarization magic-angle spinning (CP/MAS) and 1H MAS NMR spectroscopy which confirm an all-trans conformation of the guest chains. Dynamic 2H NMR experiments are carried out on two guest molecules selectively deuterated at both end groups. A quantitative analysis of the experimental data, obtained from variable-temperature line shape, spin–spin and spin–lattice relaxation measurements, shows that both guest molecules undergo similar motions within the investigated temperature range between 100 and 298 K. The combination of nondegenerate 6-site (or 3-site) rotational jumps and small-angle overall chain wobbling provides an appropriate motional model for the guest motions in these compounds. It is found that the populations of the jump sites exhibit a characteristic temperature dependence, although a discontinuity is missing at the solid–solid phase transition. The same holds for the guest motions which also remain unaffected by the change of the urea lattice structure. Rather, a discontinuity of the guest dynamics at about 30 and 10 degrees above the corresponding solid–solid phase transition is observed for 1,10-dibromodecane and 1,11-dibromoundecane in urea, respectively. Likewise, there is no clear evidence for an odd–even effect due to the change of the guest chain length on the molecular properties of the present inclusion compounds. As a general result, it is concluded that the intermolecular interactions in the present materials are stronger than in n-alkane/urea inclusion compounds. Authors' address: Klaus Müller, Institut für Physikalische Chemie, Universit?t Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany  相似文献   

14.
The advantages offered by ultra-fast (>60 kHz) magic angle spinning (MAS) rotation for the study of biological samples, notably containing paramagnetic centers are explored.It is shown that optimal conditions for performing solid-state 13C NMR under 60 kHz MAS are obtained with low-power CW 1H decoupling, as well as after a low-power 1H,13C cross-polarization step at a double-quantum matching condition. Acquisition with low-power decoupling highlights the existence of rotational decoupling sidebands. The sideband intensities and the existence of first and second rotary conditions are explained in the framework of the Floquet–van Vleck theory.As a result, optimal 13C spectra of the oxidized, paramagnetic form of human copper zinc superoxide dismutase (SOD) can be obtained employing rf-fields which do not exceed 40 kHz during the whole experiment. This enables the removal of unwanted heating which can lead to deterioration of the sample. Furthermore, combined with the short 1H T1s, this allows the repetition rate of the experiments to be shortened from 3 s to 500 ms, thus compensating for the sensitivity loss due to the smaller sample volume in a 1.3 mm rotor. The result is that 2D 13C–13C correlation could be acquired in about 24 h on less than 1 mg of SOD sample.  相似文献   

15.
Cartilage is a load-bearing tissue that provides smooth articulation during motion of human joints like the knee and hip. Cartilage deterioration in the form of osteoarthritis (OA) causes painful joint motion in more than 100 million patients worldwide, and thus there is great interest in improving our understanding of cartilage to further clinical treatment. Previous studies have examined many aspects of cartilage mechanics, including the flow of interstitial water and repulsion of neighboring glycosaminoglycan chains. However, the contributions of specific molecules to overall tissue properties remain unclear. In this study, we use nuclear magnetic resonance (NMR) diffusometry and relaxometry to examine the molecular dynamics of water and cartilage polymers in OA human articular cartilage. To our knowledge, this is the first identification of two macromolecular populations corresponding to collagen and proteoglycan in human cartilage through their diffusive properties. Further, we performed NMR T 1T 2 correlation studies on human cartilage and observed two populations of water distinguished by differing NMR relaxation corresponding to a solid-like component and a liquid-like component. These results provide fundamental insight on the water behavior and polymeric interactions that drive the functional mechanics of cartilage. This study provides a basis to both expand our understanding of basic cartilage mechanics and provide molecular dynamics data for design of novel biomaterials to improve joint health.  相似文献   

16.
The Component-Resolved methodology was applied to 1H spin-echo and 27Al–1H cross polarization (CP) MAS NMR data of aluminosilicate glasses. The method was able to resolve two components with different T2 relaxation rates, hydroxyl groups (OH) and molecular water (H2Omol), from the spin-echo data and to determine partial spectra and the relative abundances of OH and H2Omol. The algorithm resolved two to three components with different 27Al–1H CP dynamics from the 27Al–1H cross polarization data; the obtained partial NMR spectra for Al–OH are in excellent agreement with those obtained previously from the difference spectra between spectra with various contact times and confirm previous quantitative results and models for the Al–OH, Si–OH and H2Omol speciation (Malfait and Xue, 2010).  相似文献   

17.
13C cross-polarization/magic-angle spinning (CP/MAS) solid-state NMR spectroscopy has been employed to analyze four vitamin D compounds, namely vitamin D3 (D3), vitamin D2 (D2), and the precursors ergosterol (Erg) and 7-dehydrocholesterol (7DHC). The 13C NMR spectrum of D3 displays a doublet pattern for each of the carbon atoms, while that of Erg contains both singlet and doublet patterns. In the cases of 7DHC and D2, the 13C spectra display various multiplet patterns, viz. singlets, doublets, triplets, and quartets. To overcome the signal overlap between the 13C resonances of protonated and unprotonated carbons, we have subjected these vitamin D compounds to 1D 1H-filtered 13C CP/MAS and {1H}/13C heteronuclear correlation (Hetcor) NMR experiments. As a result, assisted by solution NMR data, all of the 13C resonances have been successfully assigned to the respective carbon atoms of these vitamin D compounds. The 13C multiplets are interpreted due to the presence of s-cis and s-trans configurations in the α- and β-molecular conformers, consistent with computer molecular modeling determined by molecular dynamics and energy minimization calculations. To further characterize the ring conformations in D3, we have successfully extracted chemical shift tensor elements for the 13C doublets. It is demonstrated that 13C solid-state NMR spectroscopy provides a robust and high sensitive means of characterizing molecular conformations in vitamin D compounds.  相似文献   

18.
Results of13C MAS NMR measurements of the Rb x C60 system (x=2.75, 3, 4, 6) and the A6C60 compounds (A=K, Rb, Cs) are presented. Special attention was paid to sample preparation in order to suppress effects of impurities and lattice defects due to imperfect C60 starting material. The13C MAS NMR measurements of the Rb x C60 system demonstrate the usefulness of this method to reveal valuable information about its phase diagram. The existence of underdoped Rb3C60 is proved. Well resolved lines in all investigated A6C60 compounds confirm the orientational order of the C60 ions. An assignment of the signals to the three magnetically inequivalent carbon atom positions in the crystal structure is proposed.  相似文献   

19.
20.
Hevea brassiliensis (rubber wood) was esterified with palmitoyl chloride, prepared from the reaction of palmitic acid with thionyl chloride. The weight gain of the wood increased with increasing reaction time and temperature, the esterified wood were evaluated for their photostability and dimensional stability. Fourier transform infrared spectroscopy (FTIR), solid-state cross-polarization/magic angle spinning 13C nuclear magnetic resonance spectroscopy (CP/MAS 13C NMR) were used to elucidate the characteristics of wood after esterification. The dimensional stability and photostability of the wood was improved by esterification. This is an important observation since chemical modification of wood with fatty acid chlorides has been found to induce thermo-plasticity into wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号