首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了以1-(2-吡啶偶氮)-2-萘酚(PAN)为络合剂,以非离子型表面活性刺Triton X-100为萃取剂的浊点萃取分离富集-火焰原子吸收光谱法测定痕量钯的新方法。详细考察了溶液的pH、络合剂和表面活性剂浓度、平衡温度和时间等条件对浊点萃取效果的影响。该方法对钯的检出限为30.8ng/mL,相对标准偏差(RSD)为2.1%(n=10),回收率在97.8%-106.6%之间。可用于催化剂中Pd(Ⅱ)的测定。  相似文献   

2.
浊点萃取-火焰原子吸收光谱法测定水样中痕量铜的研究   总被引:19,自引:0,他引:19  
提出了浊点萃取火焰原子吸收光谱法测定痕量铜的新方法。详细探讨了溶液pH,试剂浓度等实验条件对浊点萃取及测定灵敏度的影响,在最佳下,富集50mL样品溶液,用火焰原子吸收光谱法测定,铜的检测限为0.35μg/L,铜的富集倍率为71倍。方法用于自来水、河水及海水中痕量铜的测定。  相似文献   

3.
Teo KC  Chen J 《The Analyst》2001,126(4):534-537
Cloud point extraction has been used for the preconcentration of manganese, after the formation of a complex with 1-(2-thiazolylazo)-2-naphthol (TAN), and later analysis by flame atomic absorption spectrometry using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. Under the optimum conditions (i.e., pH = 9.2, [TAN] = 2.0 x 10(-5) mol l-1, [Triton X-114] = 0.05%, added methanol volume = 0.2 ml), preconcentration of 50 ml of sample solution permitted the detection of 0.28 ppb for manganese. The enhancement factor was 57.6. The proposed method has been applied to the determination of manganese in water samples.  相似文献   

4.
The speciation of Mn(II) in tea infusion was studied using cloud point extraction (CPE). In tea infusion, the flavonoid-bound Mn(II) was extracted at pH 5.0 using Triton X-100 (TX-100), the remaining free aquated Mn(II) and weakly-complexed Mn(II) in solution were both chelated with 8-hydroxyquinoline (HOx) and CPE-preconcentrated with TX-100. The enriched analyte was determined by flame AAS. The optimal concentrations for CPE of 0.02 ppm Mn were as follows: TX-100, 0.2% (v/v); HOx, 1.0 × 10−4 M; NaCl, 1.0% (w/v). LOD was 1.9 μg/L with a preconcentration factor of 10–20. The method was validated using a standard XAD-resin separation procedure and applied to synthetic seawater and CRM samples.  相似文献   

5.
In this article, a sensitive cloud point extraction procedure for the preconcentration of trace amounts of palladium, gold and nickel prior to their determination by flame atomic absorption spectrometry has been developed. The cloud point extraction method is based on the complexation of Pd(II), Au(II), and Ni(II) ions with 1-(2-pyridylazo)-2-naphthol and entrapping in non-ionic surfactant Triton X-114. The main factors affecting cloud point extraction efficiency, such as pH of sample solution, concentration of 1-(2-pyridylazo)-2-naphthol and Triton X-114, equilibration temperature and time, were investigated in detail. Under the optimized conditions, calibration curves were constructed for the determination of palladium, gold and nickel according to the general procedure. Linearity was maintained from 0.01 to 1.0 μg/mL for palladium, 10.0 μg/mL to 1.5 μg/mL for gold, and 10.0 μg/mL to 0.5 μg/mL for nickel. Detection limits based on three times the standard deviation of the blank divided by the slope of analytical curve (3Sb/m) for Pd(II), Au(III), and Ni(11) ions were 3.4, 3.9, and 2.4 μg/mL, respectively. Seven replicate determination of a mixture of 0.5 μg/mL palladium and gold and 0.2 μg/mL nickel gave a mean absorbance of 0.174, 0.150, and 0.201 with relative standard deviation ±1.5, ±1.3, and ±1.8%, respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of palladium, gold and nickel in certified reference material and water samples with satisfactory results.  相似文献   

6.
A new approach for a cloud point extraction electrothermal atomic absorption spectrometric method was used for determining bismuth. The aqueous analyte was acidified with sulfuric acid (pH 3.0-3.5). Triton X-114 was added as a surfactant and dithizone was used as a complexing agent.After phase separation at 50 °C based on the cloud point separation of the mixture, the surfactant-rich phase was diluted using tetrahydrofuran (THF). Twenty microliters of the enriched solution and 10 μl of 0.1% (w/v) Pd(NO3)2 as chemical modifier were dispersed into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry. After optimizing extraction conditions and instrumental parameters, a preconcentration factor of 196 was obtained for a sample of only 10 ml. The detection limit was 0.02 ng ml−1 and the analytical curve was linear for the concentration range of 0.04-0.60 ng ml−1. Relative standard deviations were <5%.The method was successfully applied for the extraction and determination of bismuth in tap water and biological samples (urine and hair).  相似文献   

7.
Cloud point extraction (CPE) has been used for the preconcentration and indirect quantification of cyanide after the formation of a ion-associate complex with 3-amino-7-diethylamino-8,9-benzo-2-phenoxazine chloride (Nile blue, NB+) in the presence of copper (II) ions, and later analysis by flame atomic absorption spectrometry (FAAS) using polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) as extracting surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. At pH 5.5, preconcentration of only 50 mL of sample in the presence of 0.04 % (w/v) PONPE 7.5 and 5.64 × 10?5 mol L?1 Nile blue permitted the detection of 3.75 μg L?1 cyanide. The enhancement factor was 64.7 for cyanide. The proposed method was successfully applied to the determination of free cyanide in environmental water samples. The method was compared with the pyridine–barbituric acid method and the paired t test was used to determine whether the results obtained by the two methods differ significantly.  相似文献   

8.
Cloud point extraction employing the new reagent 6-[2′-(6′-methyl-benzothiazolylazo)]-1,2-dihydroxy-3,5-benzenedisulfonic acid as complexing agent and Triton X-114 as the surfactant is proposed for copper determination. A sample volume of 10 mL was used. Dilution of the surfactant-rich phase with acidified methanol was performed after phase separation, and the copper contents were measured by flame atomic absorption spectrometry. Variables affecting the system were optimized using factorial design and Doehlert matrix. Signals were measured as peak height using an instrument software. Using the experimental conditions defined in the optimization, the method allowed copper determination with a detection limit of 1.5 μg L−1. The calculated enrichment factor is 14. The effects of foreign ions are reported. The accuracy of the procedure was tested by analyzing certified reference material. The method was successfully applied to copper determination in natural and drinking water samples.  相似文献   

9.
Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 μg L−1 with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03–4.00 μg L−1. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.  相似文献   

10.
Rapidly synergistic cloud point extraction (RS-CPE) was coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to result in new CPE patterns and accelerated (1?min) protocols. It is demonstrated, for the case of copper (II) ion, that TS-FF-AAS improves the sampling efficiency and the sensitivity of FAAS determinations. Problems of nebulization associated with previous methods based on the coupling of FAAS and RS-CPE are overcome. TS-FF-AAS also improves sensitivity and gives a limit of detection for copper of 0.20?μg?L-1, which is better by a factor of 32. Compared to direct FAAS, the factor is 114.
Figure
The coupling of RS-CPE with TS-FF-AAS for copper detection  相似文献   

11.
Dithizone (diphenylthiocarbazone) was used as a complexing agent in cloud point extraction for the first time and applied for selective preconcentration of trace amounts of silver. The analyte in the initial aqueous solution was acidified with sulfuric acid (pH<1) and Triton X-114 was added as a surfactant. After phase separation, based on the cloud point separation of the mixture, the surfactant rich phase was diluted with tetrahydrofuran (THF) and the analyte determined in the enriched solution by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, a preconcentration factor of 43 was obtained for only 10 ml of sample. The analytical curve was linear in the range of 3-200 ng ml−1 and the limit of detection was 0.56 ng ml−1. The proposed method was applied to the determination of silver in water samples.  相似文献   

12.
13.
In this work, cloud point extraction (CPE) technique was developed for the separation and pre-concentration of Cd(II). CPE was used with lipophilic hexadentate (N4O2) Schiff base ligand, L22pysa (1, C24H26N4O2). The methodology is based upon the formation of a Cd(II)/L complex soluble in a micellar phase the non-ionic surfactant Triton X-114. This complex is then extracted into the surfactant-rich phase above its cloud point temperature. Several important variables that affect the CPE were investigated and optimized. Under the optimum experimental conditions, the calibration graph was linear over the range 1?C100?ng?mL?1 with a correlation coefficient of 0.9997. The detection limit obtained under optimum conditions was 0.44?ng?mL?l. The proposed method was successfully applied to the determination of Cd(II) in rice and various water samples.  相似文献   

14.
In this study, flow injection-cloud point extraction (FI-CPE) of iron and copper in food samples by flame atomic absorption spectrometric determination was described. Triton X-114 non-ionic surfactant and Eriochrome Cyanine R (ECR) have been used as an extraction medium and a chelating agent, respectively. The amounts of Triton X-114, ECR and the pH value necessary for extraction were carefully optimized. In addition, several parameters of the FI-CPE system, including sample loading rate, column dimension, type of packing material, eluent flow rate were investigated and analytical characteristics of the method were evaluated. Under optimum conditions, detection limits of 0.33 ng/mL and 0.57 ng/mL and quantification limits of 1.1 ng/mL and 1.9 ng/mL for iron and copper along with enrichment factors of 141 and 99 were obtained, respectively. The calibration was linear over the range 1.5-25 ng/mL and 1.0-35 ng/mL for iron and copper, respectively. The proposed CPE technique has been successfully applied for the determination of iron and copper ions in certified reference materials (NCS DC 73349—bush, branches and leaves; and TM-23.2—fortified water), water samples (mineral and sea water) and food samples (vegetables, bread and hazelnut) with high efficiency.  相似文献   

15.
Cloud point extraction (CPE) has been used for the simultaneous pre-concentration of cadmium, copper, lead and zinc after the formation of a complex with 1-(2-thiazolylazo)-2-naphthol (TAN), and later analysis by flame atomic absorption spectrometry (FAAS) using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. At pH 8.6, pre-concentration of only 50 ml of sample in the presence of 0.05% Triton X-114 and 2×10−5 mol l−1 TAN permitted the detection of 0.099, 0.27, 1.1 and 0.095 ng ml−1 cadmium, copper, lead and zinc, respectively. The enhancement factors were 57.7, 64.3, 55.6 and 63.7 for cadmium, copper, lead and zinc, respectively. The proposed method has been applied to the determination of cadmium, copper, lead and zinc in water samples and a standard reference material (SRM).  相似文献   

16.
浊点萃取电热原子吸收光谱法测定水中痕量铊   总被引:2,自引:0,他引:2  
采用吡咯烷基二硫代氨基甲酸铵(APDC)为螯合剂,Triton X-114作为表面活性剂,建立了浊点萃取预富集电热原子吸收光谱法测定水中痕量铊的方法。在优化的实验条件下,方法的检出限可达0.07μg/L,相对标准偏差为3.6%(4μg/L,n=7),加标回收率为93%~106%,富集倍率为31。该方法成功应用于自来水和河水中痕量铊的测定。  相似文献   

17.
An ultrasound-assisted cloud point extraction (CPE) procedure was used for preconcentration and determination of vanadium by graphite furnace atomic absorption spectrometry. The vanadyl(IV) complex with ascorbic acid form a hydrophobic complex with 4-(2-pyridylazo) resorcinol (PAR) in a micelle medium, which is stable under our working conditions, and followed by its extraction into Triton X-100 surfactant-rich phase. The main factors affecting CPE efficiency, such as pH, concentrations of PAR, ascorbic acid and Triton X-100, incubation temperature, frequency and equilibration time of ultrasonic bath were investigated in detail. Under the optimum conditions, preconcentration of 10 mL sample gave a preconcentration factor of 36.4 and a detection limit of 4.0 µg kg?1. The proposed method was successfully applied to determination of vanadium in sea cucumbers with satisfactory results.  相似文献   

18.
In the presented work, the conditions for cloud point extraction of iron from aqueous solutions using 7-iodo-8-hydroxyquinolin-5-sulphonic acid (Ferron) was investigated and optimized. The procedure is based on the separation of its ferron complex into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1.0 M HNO3 in methanol. Iron was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions were investigated. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for iron was 0.4 ng m L-1, enrichment factor of 19.6 and preconcentration factor of 30 could be achieved. The validity of cloud point extraction was checked by employing real samples including soil, blood, spinach, milk, meat, liver and orange juice samples using the standard addition method, which gave satisfactory results.In the presented work, the conditions for cloud point extraction of iron from aqueous solutions using 7-iodo-8-hydroxyquinolin-5-sulphonic acid (Ferron) was investigated and optimized. The procedure is based on the separation of its ferron complex into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1.0 M HNO3 in methanol. Iron was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions were investigated. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for iron was 0.4 ng m L−1, enrichment factor of 19.6 and preconcentration factor of 30 could be achieved. The validity of cloud point extraction was checked by employing real samples including soil, blood, spinach, milk, meat, liver and orange juice samples using the standard addition method, which gave satisfactory results.   相似文献   

19.
The formation of a complex with 2-(5-brom-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP) and cloud point extraction have been applied to the preconcentration of cadmium followed by its determination by graphite furnace atomic absorption spectrometry (GFAAS) using octylphenoxypolyethoxyethanol (TritonX-114) as surfactant. The chemical variables affecting the separation were optimized. At pH 7.0, preconcentration of only 10 mL of sample in the presence of 0.05% TritonX-114 and 2.5 × 10−6 M 5-Br-PADAP enabled the detection of 0.04 μg/L cadmium. The enrichment factor was 21 for cadmium. The regression equation was A = 0.0439C(μg/L) + 7.2 × 10−3. The correlation coefficient was 0.9995. The precision for 10 replicate determinations at 10 μg/L Cd was 2.7% relative standard deviation (RSD). The proposed method has been applied to the determination of cadmium in water samples. The text was submitted by the authors in English.  相似文献   

20.
Chen J  Xiao S  Wu X  Fang K  Liu W 《Talanta》2005,67(5):992-996
Cloud point extraction (CPE) has been used for the pre-concentration of lead, after the formation of a complex with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP), and later analysis by graphite furnace atomic absorption spectrometry (GFAAS) using octylphenoxypolyethoxyethanol (TritonX-114) as surfactant. The chemical variables affecting the separation phase were optimized. Separation of the two phases was accomplished by centrifugation for 15 min at 4000 rpm. Under the optimum conditions i.e., pH 8.0, cloud point temperature 40 °C, [5-Br-PADAP] = 2.5 × 10−5 mol l−1, [Triton X-114] = 0.05%, added methanol volume = 0.15 ml, pre-concentration of only 10 ml sample permitted an enhancement factor of 50-fold. The lower limit of detection (LOD) obtained under the optimal conditions was 0.08 μg l−1. The precision for 10 replicate determinations at 5 μg l−1 Pb was 2.8% relative standard deviation (R.S.D.). The calibration graph using the pre-concentration system for lead was linear with a correlation coefficient of 0.9984 at levels near the detection limits up to at least 30 μg l−1. The method was successfully applied to the determination of lead in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号