首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The [Cu(3)(dppm)(3)OH](BF(4))(2) cyclic cluster host is found to be luminescent at 298 K (lambda(max) = 540 nm; tau(e) = 89 +/- 9 &mgr;s; Phi(e) = 0.14 +/- 0.01) in degassed ethanol solutions and at 77 K (lambda(max) = 480 nm; tau(e) = 170 +/- 40 &mgr;s; Phi = 0.73 +/- 0.07) also in ethanol. The nature of the lowest energy excited states has been addressed theoretically using density functional theory and experimentally using UV-visible, luminescence, and polarized luminescence spectroscopy and is found to be (1,3)A(2) arising from the.(18e)(4)(7a(2))(1)(13a(1))(1) electronic configuration. The excited state geometry optimization for the model Cu(3)(PH(3))(6)OH(2+) compound in its T(1) state ((3)A(2)) has been performed using density functional theory and compared to its ground state structure. The Cu.Cu bond length is expected to decrease greatly in the excited state (calculated DeltaQ approximately 0.47 ?), in agreement with the d(10) electronic configuration. The perturbation of the photophysical properties by the addition of two guest carboxylate anions has been investigated. From the Stern-Volmer plots, the quenching constants, k(q), are 1.65 x 10(8) and 5.10 x 10(8) M(-)(1) s(-)(1) for acetate and 4-aminobenzoate, respectively, which are also proportional to the relative binding strengths of the substrates with Cu(3)(dppm)(3)OH(2+) (i.e., acetate < 4-aminobenzoate).  相似文献   

2.
Photochemical properties of photoinduced omega-bond dissociation in p-benzoylbenzyl phenyl sulfide (BBPS) in solution were investigated by time-resolved EPR and laser flash photolysis techniques. BBPS was shown to undergo photoinduced omega-bond cleavage to yield the p-benzoylbenzyl radical (BBR) and phenyl thiyl radical (PTR) at room temperature. The quantum yield (phi(rad)) for the radical formation was found to depend on the excitation wavelength, i.e., on the excitation to the excited singlet states, S2 and S1 of BBPS; phi(rad)(S2) = 0.65 and phi(rad)(S1) = 1.0. Based on the CIDEP data, these radicals were found to be produced via the triplet state independent of excitation wavelength. By using triplet sensitization of xanthone, the efficiency (alpha(rad)) of the C-S bond fission in the lowest triplet state (T1) of BBPS was determined to be unity. The agreement between phi(rad)(S1) and alpha(rad) values indicates that the C-S bond dissociation occurs in the T1 state via the S1 state due to a fast intersystem crossing from the S1 to the T1 state. In contrast, the wavelength dependence of the radical yields was interpreted in terms of the C-S bond cleavage in the S2 state competing with internal conversion from the S2 to the S1 state. The smaller value of phi(rad)(S2) than that of phi(rad)(S1) was proposed to originate from the geminate recombination of singlet radical pairs produced by the bond dissociation via the S2 state. Considering the electronic character of the excited and dissociative states in BBPS showed a schematic energy diagram for the omega-bond dissociation of BBPS.  相似文献   

3.
The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. M?ssinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO) 相似文献   

4.
Absolute quantum yields for the radical (H + HCO) channel of HCHO photolysis, Phi(HCO), have been measured for the tropospherically relevant range of wavelengths (lambda) between 300 and 330 nm. The HCO photoproduct was directly detected by using a custom-built, combined ultra-violet (UV) absorption and cavity ring down (CRD) detection spectrometer. This instrument was previously employed for high-resolution (spectral resolution approximately 0.0035 nm) measurements of absorption cross-sections of HCHO, sigma(HCHO)(lambda), and relative HCO quantum yields. Absolute Phi(HCO) values were measured at seven wavelengths, lambda = 303.70, 305.13, 308.87, 314.31, 320.67, 325.59, and 329.51 nm, using an independent calibration technique based on the simultaneous UV photolysis of HCHO and Cl(2). These Phi(HCO) measurements display greater variability as a function of wavelength than the current NASA-JPL recommendations for Phi(HCO). The absolute Phi(HCO)(lambda) determinations and previously measured sigma(HCHO)(lambda) were used to scale an extensive set of relative HCO yield measurements. The outcome of this procedure is a full suite of data for the product of the absolute radical quantum yield and HCHO absorption cross-section, Phi(HCO)(lambda)sigma(HCHO)(lambda), at wavelengths from 302.6 to 331.0 nm with a wavelength resolution of 0.005 nm. This product of photochemical parameters is combined with high-resolution solar photon flux data to calculate the integrated photolysis rate of HCHO to the radical (H + HCO) channel, J(HCO). Comparison with the latest NASA-JPL recommendations, reported at 1 nm wavelength resolution, suggests an increased J(HCO) of 25% at 0 degrees solar zenith angle (SZA) increasing to 33% at high SZA (80 degrees). The differences in the calculated photolysis rate compared with the current HCHO data arise, in part, from the higher wavelength resolution of the current data set and highlight the importance of using high-resolution spectroscopic techniques to achieve a complete and accurate picture of HCHO photodissociation processes. All experimental Phi(HCO)(lambda)sigma(HCHO)(lambda) data are available for the wavelength range 302.6-331.0 nm (at 294 and 245 K and under 200 Torr of N(2) bath gas) as Supporting Information with wavelength resolutions of 0.005, 0.1, and 1.0 nm. Equivalent data sets of Phi(H(2)+CO)(lambda)sigma(HCHO)(lambda) for the molecular (H(2) + CO) photofragmentation channel, produced using the measured Phi(HCO)(lambda) sigma(HCHO)(tau) values, are also provided at 0.1 and 1.0 nm resolution.  相似文献   

5.
The 355 nm laser flash photolysis of nalidixic acid at pH 9.2 leads to the formation of the nalidixate anion triplet state (absorption lambda max = 620 nm; 5700 less than or equal to epsilon T less than or equal to 9000 M-1cm-1; 0.6 less than or equal to phi T less than or equal to 1). The first order triplet state decay (kT = 7.7 x 10(3) s-1) is accompanied by a diffusion controlled triplet-triplet annihilation. Oxygen efficiently quenches the triplet state (k = 3.2 x 10(9) M-1s-1). The nalidixate radical dianion (absorption lambda max = 650 nm; epsilon = 3000 M-1cm-1) is produced by the diffusion controlled reductive quenching of the triplet state by tryptophan and tyrosine. The superoxide anion (O2-.) is produced by diffusion controlled reaction of the radical dianion with oxygen. The O2-. is characterized by its reactions with ferricytochrome c and superoxide dismutase. The physiological form of nalidixic acid is thus a good Type I and Type II photosensitizer.  相似文献   

6.
Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).  相似文献   

7.
The speed averaged translational anisotropy and electronic angular momentum polarization of the O(1D2) atomic fragment formed from the photodissociation of ozone in the atmospherically important long wavelength region of the Hartley band (298 to 320 nm) have been measured using resonance enhanced multiphoton ionization time of flight mass spectrometry. The translational anisotropy parameter, beta, is found to decline from 1.1 for photolysis at 300 nm to a minimum value of 0 at 310 nm which is the threshold for production of O(1D2) in conjunction with the O2(a 1Deltag v = 0) molecular cofragment. For photolysis wavelengths greater than 310 nm, O(1D2) is formed from the dissociation of internally excited ozone molecules. The corresponding beta parameters are markedly lower than for atomic fragments produced with the same speed from the photolysis of ground state ozone molecules. This result is consistent with two different pathways contributing to the photolysis of internally excited ozone at the longest wavelengths studied corresponding to initial internal excitation either in the symmetric or asymmetric stretching vibration. In addition, the polarization of the atomic angular momentum has been determined with the incoherent polarization parameters a0(2)(||) and a0(2)(_|) increasing from values of -0.53 and -0.62 at 300 nm to -0.37 and -0.19 at 317 nm, consistent with the increasing contribution from the photolysis of internally excited ozone as the dissociation wavelength lengthens. Evaluation of these alignment parameters allows the populations of the magnetic substrates, mj, to be determined. For example, for a photolysis wavelength of 303 nm the populations of mj = 0, +/- 1, +/- 2 are in the ratio of 0.36: 0.56: 0.08 and this ratio is essentially independent of the photolysis wavelength. The coherent contribution to the atomic polarization is quantified by the Re{a1(2)(||, _|)} and Im{a1(1)(||, _|)} parameters and these are found to vary from -0.21 and 0.21 at 300 nm to -0.04 and 0.24 at 313 nm, respectively.  相似文献   

8.
The translational anisotropy and angular momentum polarization of the O(2)(a (1)Delta(g),v = 0;J = 15-27) molecular photofragment produced from the UV photodissociation of O(3) in the range from 270 to 300 nm have been determined using resonance-enhanced multiphoton ionization in conjunction with time-of-flight mass spectrometry. At the shortest photolysis wavelengths used, the fragments exhibit the anisotropic vector correlations expected from a prompt dissociation via the (1)B(2) <--(1)A(1) transition. Deviations from this behavior are observed at longer photolysis wavelengths with, in particular, the angular momentum orientation showing a significant reduction in magnitude. This indicates that the dissociation can no longer be described by a purely impulsive model and a change in geometry of the dissociating molecule is implied. This observation is substantiated by the variation of the translational anisotropy with photolysis wavelength. We also observe that the bipolar moments describing the angular momentum polarization of the odd J states probed are consistently lower in magnitude than those of the even J states and that this variation is observed for all photolysis wavelengths.  相似文献   

9.
Photodissociation dynamics of salicylic acid (SA) in the gas phase at different photolysis wavelengths (266, 315-317 nm) is investigated by probing the nascent OH photoproduct employing the single-photon laser-induced fluorescence (LIF) technique. At all the photolysis wavelengths it is found that the nascent OH radicals are produced mostly in a vibrationally ground state (υ' = 0) and have similar rotational state distributions. The two spin-orbit and Λ-doublet states of the OH fragment formed in the dissociation are measured to have a nonstatistical distribution at each photolysis wavelength. The LIF signal of the OH could be observed upon photolysis at 317 nm but not at 317.5 nm. The threshold of OH formation from SA photodissociation is estimated to be 98.2 ± 0.9 kcal/mol. The effect of the phenolic OH group on the dissociation of SA is discussed.  相似文献   

10.
Photolysis of aqueous NO3(-) with lambda > or = 195 nm is known to induce the formation of NO2(-) and O2 as the only stable products. The mechanism of NO3- photolysis, however, is complex, and there is still uncertainty about the primary photoprocesses and subsequent reactions. This is, in part, due to photoisomerization of NO3(-) to ONOO(-) at lambda < 280 nm, followed by the formation of *OH and *NO2 through the decomposition of ONOOH (pKa = 6.5-6.8). Because of incomplete information concerning the mechanism of peroxynitrite (ONOOH/ONOO(-)) decomposition, previous studies were unable to account for all observations. In the present study aqueous nitrate solutions were photolyzed by monochromatic light in the range of 205-300 nm. It is shown that the main primary processes at this wavelength range are NO3(-) hv-->*NO2 + O*(-) (reaction 1) and NO3(-) hv--> ONOO(-) (reaction 2). Based on recent knowledge on the mechanisms of peroxynitrite decomposition and its reactions with reactive nitrogen and oxygen species, we determined Phi(1) and Phi(2) using different experimental approaches. Both quantum yields increase with decreasing the excitation wavelength, approaching Phi(1) = 0.13 and Phi(2) = 0.28 at 205 nm. It is also shown that the yield of nitrite increases with decreasing the excitation wavelength. The implications of these results on UV disinfection of drinking water are discussed.  相似文献   

11.
Self-reaction of hydroxyl radicals, OH + OH → H(2)O + O (1a) and OH + OH → H(2)O(2) (1b), was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 298-834 K temperature and 1-100 bar pressure ranges (bath gas He). A heatable high-pressure flow reactor was employed. Hydroxyl radicals were prepared using reaction of electronically excited oxygen atoms, O((1)D), produced in photolysis of N(2)O at 193 nm, with H(2)O. The temporal behavior of OH radicals was monitored via transient absorption of light from a dc discharge in H(2)O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study combined with the literature data indicate that the rate constant of reaction 1a, associated with the pressure independent component, decreases with temperature within the temperature range 298-414 K and increases above 555 K. The pressure dependent rate constant for (1b) was parametrized using the Troe expression as k(1b,inf) = (2.4 ± 0.6) × 10(-11)(T/300)(-0.5) cm(3) molecule(-1) s(-1), k(1b,0) = [He] (9.0 ± 2.2) × 10(-31)(T/300)(-3.5±0.5) cm(3) molecule(-1) s(-1), F(c) = 0.37.  相似文献   

12.
The photochemistry of azoethane and hexafluoroazomethane at 366 nm has been reinvestigated up to 1 atm pressure, and over a range of temperature from 27 to 150°C. The Stern-Volmer type quenching plots primarily demonstrate the decomposition of a single electronic and vibrationally excited state for azoethane, but competitive photodissociation from two different electronic and vibrationally excited states, which was previously postulated for hexafluoroazomethane and azoisopropane, is confirmed for hexafluoroazomethane. It is concluded, however, that two different electronic and vibrationally excited photodissociating states are present in azoethane photolysis, but that one of them is difficult to detect, at least by the present approach Photosensitization with biacetyl at 436 nm also causes the dissociation of azoethane, and this is probably from the vibrationally equilibrated first triplet state. The energy barrier for this process was found to be 5.0 kcal/mol.  相似文献   

13.
The photoprocesses of two bis-benzimidazole dyes, Hoechst 33258 (1) and an analog, where the phenolic group in p-position is replaced by an ethoxy group, Hoechst 33342 (2), were studied. For 1 and 2 in aqueous solution the quantum yield of fluorescence is strongly pH dependent; it decreases from a maximum value of phi f = 0.4 at pH 5 to phi f = 0.02 at pH 8. The effects of absorption and fluorescence, induced by sodium dodecyl sulfate surfactants below and above the critical micelle concentration and by double-stranded DNA, are interpreted by assuming that in bulk aqueous solution the dyes are essentially present as monomers. The strong enhancement of phi f, when the dye is bound to double-stranded DNA or solubilized in micelles, is suggested to be due to different environments at the benzimidazole rings. A quinoid intermediate with absorption maximum at 380 nm is formed for 1 at neutral pH using lambda exc = 248 or 308 nm. N-centered radicals of 1 or 2 in aqueous solution were observed by laser flash photolysis after electron ejection using wavelengths of 193 or 248 nm (mono and biphotonic, respectively). The precursor radical cation escaped observation but is transformed into the above radicals by deprotonation. Electron transfer from 1 in aqueous solution to triplet acetone takes place, and subsequent deprotonation is proposed to yield N-centered radicals. In addition, energy transfer from acetone to 1 is suggested, leading to T-T absorption with the maximum at 700 nm. The photoprocesses are discussed and the results compared with those known from pulse radiolysis.  相似文献   

14.
Tyrosine and especially its 3,5-dihalogenoderivatives quench acetone triplets. When the excited acetone is generated free in solution, the Stern-Volmer plots for the quenching by these species, monitored via the sensitized emission of the 9,10-dibromoanthracene-2-sulfonate ion, are linear. When triplet acetone is generated enzymically by the peroxidase-catalyzed aerobic oxidation of isobutyral-dehyde, the Stern-Volmer plots for the quenching of the acetone phosphorescence curve upwards in the case of 3,5-dibromotyrosine and even more markedly with 3,5-diiodotyrosine. Quenching appears likely to occur by triplet-triplet energy transfer and especially in the case of the phenoxide form, also by electron transfer. The curvature denotes a static contribution to quenching favoured by the enzyme.  相似文献   

15.
在243~263 nm紫外光波段通过质量选择光电离激发谱研究了丙酮(CH3COCH3)的光化学反应通道。分析母体离子CH3COCH3+和碎片离子CH3CO+ 、 CH3+的光电离激发谱和质谱峰宽可以知道: 此光波段丙酮分子的光化学反应主要包括了丙酮分子经由(S1,T1)中间态产生母体离子的(1+1)双光子电离通道,母体离子进一步解离产生碎片离子CH3+的“光电离-光解离”通道和丙酮分子经由(S1,T1)中间态解离成中性自由基碎片CH3CO后再进一步被双光子电离的“光解离-光电离”通道。由母体离子光电离激发谱双光子阈值波长(255.67 nm)给出的丙酮电离势(IP)为(9.696±0.004)eV。  相似文献   

16.
Conclusions The efficient photolysis of acetone proceeds upon the photoexcitation of the donor-acceptor complex of acetone and CCl4 by light with 300 > < 330 nm with the formation of chloroketones and CHC13 as the major products. A mechanism was proposed for the photolysis of acetone in the presence of CCl4.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2601–2603, November, 1987.  相似文献   

17.
采用多参考态方法, 在CASPT2//CASSCF/6-311+G(2df, 2p) 水平上计算了乙醇醛(HOCH2CHO)分子在三个最低电子态(S0、S1和T1)上驻点的电子结构和解离势能面。结合势能面交叉点,探讨了HOCH2CHO与波长有关的光解离机理,分析了可能的光解离产物。结果表明, 在实验光解波长240 – 400 nm的激发下,HOCH2CHO分子主要发生S1态上的解离反应或通过S0和S1态之间的振动相互作用驰豫到基态,随之发生基态解离反应。C-C键断裂生成基态光解产物HOCH2 (2A′)+ HCO (2A′)是最主要的反应途径;而在一定波长下,生成CH3OH + CO的基态协同反应、脱醛基氢及脱羟基通道都是能量上可行的反应途径。本文的计算结果和实验观察一致。  相似文献   

18.
A pulse radiolysis study of the formation and decay of the triplet excited state of liquid pyridine has been performed using quenching techniques. The pyridine triplet excited state is observed with an absorption band at lambda = 310 nm and has a first-order decay with a lifetime of 72 ns. Stern-Volmer plots of the quenching of the pyridine triplet excited state with anthracene, naphthalene, and biphenyl give its yield to be 1.3 molecules/100 eV. This value is very similar to the previously determined yield of 1.25 molecules/100 eV for dipyridyl, the predominant condensed-phase product in the gamma-radiolysis of liquid pyridine. The rate coefficient for pyridine triplet excited-state scavenging by oxygen is estimated to be 6.6 x 10(9) M(-1) s(-1). Oxygen may also scavenge the electron precursor to the pyridine triplet excited state, whereas nitrous oxide is observed to have little effect. A pyridyl radical-pyridine (dimer) complex produced in the pulse radiolysis of neat liquid pyridine is detected at lambda = 390 nm and is consistent with iodine scavenging effects. Formation of the pyridiniumyl radical cation-pyridine charge-transfer complex is proposed to be insignificant in liquid pyridine.  相似文献   

19.
The N-methylquinolinium tetrafluoroborate (NMQ(+))-sensitized photolysis of the erythro-1,2-diphenyl-2-arylsulfanylethanols 1-3 (1, aryl = phenyl; 2, aryl = 4-methylphenyl; 3, aryl = 3-chlorophenyl) has been investigated in MeCN, under laser flash and steady-state photolysis. Under laser irradiation, the formation of sulfide radical cations of 1-3, in the monomeric (lambda(max) = 520-540 nm) and dimeric form (lambda(max) = 720-->800 nm), was observed within the laser pulse. The radical cations decayed by first-order kinetics, and under nitrogen, the formation of ArSCH(*)Ph (lambda(max) = 350-360 nm) was clearly observed. This indicates that the decay of the radical cation is due to a fragmentation process involving the heterolytic C-C bond cleavage, a conclusion fully confirmed by steady-state photolysis experiments (formation of benzaldehyde and the dimer of the alpha-arylsulfanyl carbon radical). Whereas the fragmentation rate decreases as the C-C bond dissociation energy (BDE) increases, no rate change was observed by the replacement of OH by OD in the sulfide radical cation (k(OH)/k(OD) = 1). This suggests a transition state structure with partial C-C bond cleavage where the main effect of the OH group is the stabilization of the transition state by hydrogen bonding with the solvent. The fragmentation rate of 2-hydroxy sulfanyl radical cations turned out to be significantly slower than that of nitrogen analogues of comparable reduction potential, probably due to a more efficient overlap between the SOMO in the heteroatom and the C-C bond sigma-orbital in the second case. The fragmentation rates of 1(+*)-3(+*) were found to increase by addition of a pyridine, and plots of k(base) against base strength were linear, allowing calculation of the beta Bronsted values, which were found to increase as the reduction potential of the radical cation decreases, beta = 0.21 (3(+*)), 0.34 (1(+*)), and 0.48 (2(+*)). The reactions of 1(+*) exhibit a deuterium kinetic isotope effect with values that increase as the base strength increases: k(OH)/k(OD) = 1.3 (pyridine), 1.9 (4-ethylpyridine), and 2.3 (4-methoxypyridine). This finding and the observation that with the above three bases the rate decreases in the order 3(+*) > 1(+*) > 2(+*), i.e., as the C-C BDE increases, suggest that C-C and O-H bond cleavages are concerted but not synchronous, with the role of OH bond breaking increasing as the base becomes stronger (variable transition state). It is probable that, with the much stronger base, 4-(dimethylamino)pyridine, a change to a stepwise mechanism may occur where the slow step is the formation of a radical zwitterion that then rapidly fragmentates to products.  相似文献   

20.
Ion imaging methods have been used to study the dynamics of H(2)(D(2)) molecular elimination from H(2)S(+)(D(2)S(+)) cations following photoexcitation to the A(2)A(1) state in the wavelength range 300相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号