首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electronic structure of hydrated H3O+ and OH- is probed in a water jet by photoelectron spectroscopy employing 100 eV photons. The first ionization potential for OH- at 9.2 eV and the second ionization potential for H3O+ at 20 eV are resolved, corresponding to the removal of an electron from the 2ppi highest occupied molecular orbital and from the 1e orbital, respectively. These assignments are supported by present computational results based on a combination of molecular dynamics and ab initio calculations.  相似文献   

2.
To understand the autoionization of pure water and the solvation of ammonia in water, we investigated the undissociated and dissociated (ion-pair) structures of (H2O) n and NH3(H2O)n-1 (n = 5, 8, 9, 21) using density functional theory (DFT) and second order Moller-Plesset perturbation theory (MP2). The stability, thermodynamic properties, and infrared spectra were also studied. The dissociated (ion-pair) form of the clusters tends to favor the solvent-separated ion-pair of H3O+/NH4+ and OH-. As for the NH3(H2O)20 cluster, the undissociated structure has the internal conformation, in contrast to the surface conformation for the (H2O)21 cluster, whereas the dissociated structure of NH3(H2O)20 has the surface conformation. As the cluster size of (H2O)n/NH3(H2O)n-1 increases, the difference in standard free energy between undissociated and dissociated (ion-pair) clusters is asymptotically well corroborated with the experimental free energy change at infinite dilution of H3O+/NH4+ and OH-. The predicted NH and OH stretching frequencies of the undissociated and dissociated (ion-pair) clusters are discussed.  相似文献   

3.
Structural Chemistry - This paper reports the molecular structure, the electronic structure, and the decomposition energies of the [M3(COT)2(L)]2+ (M = Cr, Fe, Pd, and L = H2O, CO, N2, HCN, HNC,...  相似文献   

4.
We study the dissociation of water coordinated to a divalent metal ion center, M2+ = Mg2+, Zn2+ using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. First, the proton affinity of a coordinated OH- group is computed from gas-phase Mg2+(H2O)5(OH-), which yields a relative higher gas-phase acidity for a Zn2+-coordinated as compared to a Mg2+-coordinated water molecule, DeltapKa(gp) = 5.3. We explain this difference on the basis of a gain in stabilization energy of the Zn2+(H2O)5(OH-) system arising from direct orbital interaction between the coordinated OH- and the empty 4s state of the cation. Next, we compute the acidity of coordinated water molecules in solution using free-energy thermodynamic integration with constrained AIMD. This approach yields pKa Mg2+ = 11.2 and pKa Zn2+ = 8.4, which compare favorably to experimental data. Finally, we examine the factors responsible for the apparent decrease in the relative Zn2+-coordinated water acidity in going from the gas-phase (DeltapKa(gp) = 5.3) to the solvated (DeltapKa = 2.8) regime. We propose two simultaneously occurring solvation-induced processes affecting the relative stability of Zn2+(H2O)5(OH-), namely: (a) reduction of the Zn 4s character in solution states near the bottom of the conduction band; (b) hybridization between OH- orbitals and valence-band states of the solvent. Both effects contribute to hindering the OH- --> Zn2+ charge transfer, either by making it energetically unfavorable or by delocalizing the ligand charge density over several water molecules.  相似文献   

5.
The geometric, spectroscopic, and thermodynamic parameters of the HNC(O)H radical were studied by the DFT B3L YP/6-311++G(3df, 3pd) method. The structure of its conformers was established. Electron and spin density distributions were analyzed. The potential function of internal hindered rotation was calculated. The enthalpies of dissociation were determined for the O-H bond in HNC(OH)H and N-H bond in H2NC(O)H.  相似文献   

6.
Boughriet A  Wartel M  Fischer JC 《Talanta》1986,33(5):385-390
Knowing the values of the equilibrium constants corresponding to the reactions N(2)O(4) right harpoon over left harpoon 2NO(2) and N(2)O(4) right harpoon over left harpoon NO(+) + NO(3)(-) in sulpholane, we have undertaken the electrochemical study of N(2)O(4) by means of linear and cyclic voltammetry at the platinum electrode. The N(2)O(4) species undergoes one oxidation step N(2)O(4) right harpoon over left harpoon 2NO(2) right harpoon over left harpoon 2NO(2)(+) + 2e and two reduction steps NO(2) + N(2)O(4) + e(-)right harpoon over left harpoon N(2)O(3) + NO(3)(-) (1st wave), followed by 3N(2)O(4) + 2e(-) right harpoon over left harpoon 2N(2)O(3) + 2NO(3)(-), N(2)O(4) + e(-) right harpoon over left harpoon NO + NO(3)(-), 2N(2)O(3) + e(-) right harpoon over left harpoon 3NO + NO(3)(-) (2nd wave). The redox properties of N(2)O(4) are complicated by trace quantities of water because of the formation of the electroactive species N(2)O(3), HNO(3) and HNO(2) according to N(2)O(4) + H(2)O right harpoon over left harpoon HNO(2) + HNO(3) and N(2)O(4) + HNO(2) right harpoon over left harpoon N(2)O(3) + HNO(3). The standard potentials of the couples concerned have been evaluated and are discussed. sont discutés et évalués.  相似文献   

7.
Issa IM  Idriss KA  Ghoneim MM 《Talanta》1976,23(3):249-251
The factors affecting the success of both visual and potentiometric end-point detection in titration of bisulphite with permanganate in the presence of fluoride are examined. The optimum conditions are 0.02M H(2)SO(4) and 0.24-0.38M NaF. The oxidation product comprises dithionate and sulphate according to the overall reaction MnO(4)(-) + H(+) + 2HF(2)(-) + 3HSO(3)(-) right harpoon over left harpoon MnF(4)(-) + S(2)O(6)(2-) + SO(4)(2-) + 3H(2)O. The reverse titration is also satisfactory, but proceeds quantitatively according to MnO(4)(2-) + 2HF(2)(-) + 2HSO(3)(-) right harpoon over left harpoon MnF(4)(-) + 2SO(4)(2-) + 2H(2)O.  相似文献   

8.
High-temperature, high-pressure Raman spectra were obtained from aqueous NaOH solutions up to 2NaOHH2O, with X(NaOH)=0.667 at 480 K. The spectra corresponding to the highest compositions, X(NaOH)> or =0.5, are dominated by H3O2-. An IR xi-function dispersion curve for aqueous NaOH, at 473 K and 1 kbar, calculated from the data of Franck and Charuel indicates that the OH- ion forms H3O2- by preferential H bonding with nonhydrogen-bonded OH groups. Raman spectra from wet to anhydrous, solid LiOH, NaOH, and KOH yield sharp, symmetric OH- stretching peaks at 3664, 3633, and 3596 cm(-1), respectively, plus water-related, i.e., H3O2-, peaks near LiOH, 3562 cm(-1), NaOH, 3596 cm(-1), and, KOH, 3500 cm(-1). Absence of H3O2- peaks from the solid assures that the corresponding melt is anhydrous. Raman spectra from the anhydrous melts yield OH- stretching peak frequencies: LiOH, 3614+/-4 cm(-1), 873 K; NaOH, 3610+/-2 cm(-1), 975 K; and, KOH, 3607+/-2 cm(-1), 773 K, but low-frequency asymmetry due to ion-pair interactions is present which is centered near 3550 cm(-1). The ion-pair-related asymmetry corresponds to the sole IR maximum near 3550 cm(-1) from anhydrous molten NaOH, at 623 K. Bose-Einstein correction of published low-frequency Raman data from molten LiOH revealed an acoustic phonon, near 205 cm(-1), related to restricted translation of OH- versus Li+, and an optical phonon, at 625 cm(-1) and tau approximately 0.05 ps, due to protonic precession and/or pendular motion. Strong H bonding between water and the O atom of OH- forms H3O2-, but the proton of OH- does not bond with H significantly. Large Raman bandwidths (aqueous solutions) are explained in terms of inhomogeneous broadening due to proton transfer in a double well. Vibrational assignments are presented for H3O2-.  相似文献   

9.
The structures of the cyclic water pentamer, the H3O+(H2O)3OH- zwitterion, and the H3O(H2O)3OH biradical form of the (H2O)5 cluster have been determined with the second-order M?ller-Plesset method and with density-functional theory (DFT). The vertical singlet excitation energies of these structures have been calculated with the second-order approximated coupled-cluster method and with time-dependent DFT, respectively. The molecular and electronic structures of the H3O(H2O)3OH biradical have been characterized for the first time. The lowest electronic states of the biradical are slightly lower in energy than the vertically excited states of the covalent and zwitterionic (H2O)5 clusters and therefore are photochemically accessible from the latter. The electronic absorption spectrum of the biradical exhibits the characteristic features of the absorption spectrum of the hydrated electron. It is argued that the basic mechanisms of the photochemistry of water, in particular the generation of the hydrated electron by UV photons, can be unraveled by relatively straightforward electronic structure and dynamics calculations for finite-size water clusters.  相似文献   

10.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

11.
The molecular and electronic structures, stabilities, bonding features, and spectroscopic properties of prototypical ligand stabilized [cyclo-Ru3(mu2-X)3]0,3+ (X = H, BH, CH2, NH2, OH, Cl, NH, CO, O, PH2, CF2, CCl2, CNH, N3) isocycles have been thoroughly investigated by means of electronic structure calculation methods at the DFT level of theory. All [cyclo-Ru3(mu2-X)3]0,3+ species, except [cyclo-Ru3(mu2-H)3]3+, are predicted to be aromatic molecules. In contrast, the [cyclo-Ru3(mu2-H)3]3+ species exhibits a high antiaromatic character, which would be responsible for the well-established peculiar reaction field of hydrido-bridged triruthenium core structures. The aromaticity/antiaromaticity of the model [cyclo-Ru3(mu2-X)3]0,3+ isocycles was verified by an efficient and simple criterion in probing the aromaticity/antiaromaticity of a molecule, that of the nucleus-independent chemical shift, NICS(0), NICS(1), NICS(-1), NICSzz(1), and NICSzz(-1), along with the NICS scan profiles. The versatile chemical reactivity of the antiaromatic [cyclo-Ru3(mu2-H)3]3+ molecule related to the activation of small molecules that leads to the breaking of various strong single and double bonds is thoroughly investigated by means of electronic structure computational techniques, and the mechanistic details for a representative activation process, that of the dehydrogenation of NH3, to form a triply bridging imido-group (mu3-NH) face-capping the Ru3 ring are presented. Finally, the molecular and electronic structures, stabilities, and bonding features of a series of [cyclo-Ru3(mu2-H)3(mu3-Nuc)]0,1,2+ (Nuc = BH, BCN, BOMe, C4-, CH3-, CMe3-, N3-, NH, N3-, NCO-, OCN-, NCS-, O2-, S2-, OH-, P3-, POH2-, Cl-, O22-, NCH, AlMe, GaMe, C6H6, and cyclo-C3H2Me) products formed upon reacting the archetype [cyclo-Ru3(mu2-H)3]3+ molecule with the appropriate substrates are also comprehensibly analyzed.  相似文献   

12.
We probe the local electronic structure at solvated Na+ ions in 1 M aqueous NaCl solutions as a function of pH. A dramatic change in the Na+ white line intensity in X-ray absorption is observed for high pH values, reflecting a changing local electronic structure at the Na+ ions when OH- is present. Given the relative abundance of sodium and hydroxide ions, we conclude that one OH- affects at least 2.4+/-0.6 Na+ ions in an electronically noticeable way at pH 13. From the experimental data we infer that spatially extended clusters or networks incorporating Na+ and OH- can exist in the electrolyte solution. The experimental data are complemented by molecular dynamics simulations, which indicate the presence of structured clusters incorporating Na+, OH-, and solvent molecules.  相似文献   

13.
CrystalStructureofCalciumComplexwithCyanuricAcidLigand[Ca(C_3H_3N_3O_3-O)(H_2O)_6][(OH)(C_3H_2N_3O_3)]LinZhou-Bin;ChenChang-Zhang;...  相似文献   

14.
Daneţ AF  David V 《Talanta》1992,39(10):1299-1306
The partition constants of Cadion, i.e., 1-(p-nitro-phenyl)-3-(p'-azobenzene)-triazene, of its complex with the methylmercuric ion, and of methylmercury chloride were determined in the system toluene/aqueous phase containing 40 vol.% methyl alcohol; they have the values of 4.3 x 10(3), 3.0 x 10(3), and 2.6 respectively. The reagent has an absorption maximum at 406 nm, whereas the methylmercury complex at 460 nm. The K(HR) value corresponding to the H(+) + R(-) right harpoon over left harpoon HR equilibrium is 10(10.85), HR being the reagent molecule and H belongs to the NH of the triazenic group (NNNH). The K(ext) value corresponding to the equilibrium H(3)CHg(+) + (HR)(o) right harpoon over left harpoon (H(3)CHgR)(o) + H(+) is 1.0, where the "o" indicates the species present in the organic phase. The reagent/H(3)CHg(+) combination ratio is 1/1. The formation constant of the methylmercury complex, K(H(3)CHgR), which corresponds to the equilibrium H(3)CHg(+) + R(-) right harpoon over left harpoon H(3)CHgR, has a value of 10(10.8) as estimated by means of two different methods. The IR spectra allowed some conclusions to be drawn concerning the formation of the complex. The complex is stable up to 180 degrees , and the reagent up to 140 degrees . The molar absorptivity is of 3.46 x 10(4) 1.mole(-1).cm(-1) and the H(3)CHg(+) can be determined in the range 0.025-4 ppm. The determination is highly selective.  相似文献   

15.
Xing W  Ingman F 《Talanta》1982,29(8):707-711
The complexation reaction between Alizarin complexan ([3-N,N-di(carboxymethyl)aminomethyl]-1,2-dihydroxyanthraquinone; H(4)L) and zinc(II), nickel(II), lead(II), cobalt(II) and copper(II) has been studied by a spectrophotometric method. All these metal ions form 1:1 complexes with HL; 2:1 metal:ligand complex were found only for Pb(II) and Cu(II). The stability constants are (ionic strength I = 0.1, 20 degrees C): Zn(2+) + HL(3-) right harpoon over left harpoon ZnHL(-) log K +/- 3sigma(log K) = 12.19 +/- 0.09 (I = 0.5) Ni(2+) + HL(3-) right harpoon over left harpoon NiHL(-) log K +/- 3sigma(log K) = 12.23 +/- 0.21 Pb(2+) + HL(3-) right harpoon over left harpoon PbHL(-) log K +/- 3sigma(log K) = 11.69 +/- 0.06 PbHL(-) + Pb(2+) right harpoon over left harpoon Pb(2)L + H(+) log K approximately -0.8 Co(2+) + HL(3-) right harpoon over left harpoon CoHL(-) log K 3sigma(log K) = 12.25 + 0.13 Cu(2+) + HL(3-) right harpoon over left harpoon CuHL(-) log K 3sigma(log K) = 14.75 +/- 0.07 Cu(2+) + CuHL(-) right harpoon over left harpoon Cu(2)L + H(+) log K approximately 3.5 The solubility and stability of both the reagent and the complexes and the closenes of the values of the stability constants make this reagent suitable for the photometric detection of several metal ions in the eluate from an ion-exchange column.  相似文献   

16.
铅(II)-氨基多羧酸配合物的合成与结构研究   总被引:1,自引:0,他引:1  
合成了铅(II)与乙二胺四乙酸(EDTA),N-羟乙基乙二胺三乙酸(HEDTA)和 (乙酸-N-羟乙基酯)乙二胺三乙酸(AHEDTA, A = 乙酸-N-羟乙基酯)的配合物,C10H20K2N2O12Pb (K2[Pb(EDTA)]4H2O), C10H22K2N2O11Pb (K2[Pb(HEDTA)]4H2O)和C12H23KN2O11Pb (K[Pb- (AHEDTA)]3H2O), 并测定了K2[Pb(EDTA)]4H2O晶体结构和分子结构。具体测定结果如下:单斜晶系,C2/c空间群,a = 24.59(2),b = 11.79(1),c = 14.08(2) 牛琤 = 108.15(2),V = 3876.0(7)) 3,Z = 8,Mr = 654.65,Dc = 2.213 g/cm3,m = 9.196 mm-1和F(000) = 2480。最终偏差因子分别为R = 0.0458,wR = 0.0640 (对3372 (I > 2.0s(I))可观测衍射点)。在K2[Pb(EDTA)]4H2O中,配合物离子[Pb(EDTA)]2-具有六配位的非标准三棱柱体结构,EDTA作为六齿配体提供4个O原子和2个N原子与中心金属离子Pb2+形成配键。  相似文献   

17.
A series of ruthenium complexes [Ru(OAc)(dioxolene)(terpy)] having various substituents on the dioxolene ligand (dioxolene = 3,5-t-Bu2C6H2O2 (1), 4-t-BuC6H3O2 (2), 4-ClC6H3O2 (3), 3,5-Cl2C6H2O2 (4), Cl4C6O2 (5); terpy = 2,2':6'2' '-terpyridine) were prepared. EPR spectra of these complexes in glassy frozen solutions (CH2Cl2:MeOH = 95:5, v/v) at 20 K showed anisotropic signals with g tensor components 2.242 > g1 > 2.104, 2.097 > g2 > 2.042, and 1.951 > g3 > 1.846. An anisotropic value, Deltag = g1 - g3, and an isotropic g value, g = [(g1(2) + g2(2) + g3(2))/3]1/2, increase in the order 1 < 2 < 3 < 4 < 5. The resonance between the Ru(II)(sq) (sq = semiquinone) and Ru(III)(cat) (cat = catecholato) frameworks shifts to the latter with an increase of the number of electron-withdrawing substituents on the dioxolene ligand. DFT calculations of 1, 2, 3, and 5 also support the increase of the Ru spin density (Ru(III) character) with an increase of the number of Cl atoms on the dioxolene ligand. The singly occupied molecular orbitals (SOMOs) of 1 and 5 are very similar to each other and stretch out the Ru-dioxolene frameworks, whereas the lowest unoccupied molecular orbital (LUMO) of 5 is localized on Ru and two oxygen atoms of dioxolene in comparison with that of 1. Electron-withdrawing groups decrease the energy levels of both the SOMO and LUMO. In other words, an increase in the number of Cl atoms in the dioxolene ligand results in an increase of the positive charge on Ru. Successive shifts in the electronic structure between the Ru(II)(sq) and Ru(III)(cat) frameworks caused by the variation of the substituents are compatible with the experimental data.  相似文献   

18.
To probe the cis effect of the corrin macrocycle in vitamin B12 derivatives, equilibrium constants for the substitution of coordinated H2O in aquacobalamin (vitamin B12a, H2OCbl+) and in aqua-10-chlorocobalamin, H2O-10-ClCbl+, (in which Cl has replaced the C10 H) by an exogenous ligand, L (L = an anion, NO2-, SCN-, N3-, OCN-, S2O3(2-), NCSe- or a neutral N-donor, CH3NH2, pyridine, imidazole) have been determined. The cis influence reported in the electronic spectra of the cobalamins is observed in the spectra of L-10-ClCbls as well. Anionic ligands bind more strongly to H2O-10-ClCbl+ than to H2OCbl+ with log K values between 0.10 and 0.63 (average 0.26) larger; the converse is true for the neutral N-donor ligands, where log K is between 0.17 and 0.3 (average 0.25) smaller. Semi-empirical molecular orbital (SEMO) calculations using the ZINDO/1 model on the hydroxo complexes show that charge density is delocalised from the axial donor atom to the metal and Cl. This explains why coordinated OH- is a poorer base in HO-10-ClCbl than in HOCbl and the pK(a) of H2O-10-ClCbl+ is lower than that of H2OCbl+. It further explains why, because of the ability of the metal in concert with the C10 Cl to accept charge density from the ligand, an anionic ligand will bind more strongly to Co(III) in H2O-10-ClCbl+ than in H2OCbl+. The kinetics of the replacement of coordinated H2O by two probe ligand, pyridine and azide, were determined. The rate constants for substitution of H2O in H2O-10-ClCbl+ by pyridine show saturation, whilst those for substitution by N3- do not; this is inconsistent with a purely dissociative mechanism and the reactions proceed through an interchange mechanism. The values of the activation parameters are more positive for the reaction between these ligands and H2OCbl+, than for their reaction with H2O-10-ClCbl+. This is interpreted to mean that the transition state in the reaction of H2O-10-ClCbl+ occurs earlier along the reaction coordinate. In the temperature range studied, H2O-10-ClCbl+ reacts more slowly with py and N3- than does H2OCbl+. SEMO calculations indicate that as the Co-O bond to the departing H(2)O molecule is stretched, the charge density on Co in H2OCbl+ is always lower than on Co in H2O-10-ClCbl+. This suggests that the former is a better electrophile towards the incoming ligand, and offers an explanation for the kinetics observations.  相似文献   

19.
Kinetics of the overall reaction [Cr(3)O(O(2)CCH(3))(6)(H(2)O)(3)](+) + 3 urea right harpoon over left harpoon [Cr(3)O(O(2)CCH(3))(6)(urea)(3)](+) + 3H(2)O have been studied spectrophotometrically. Monophasic kinetics were observed in both directions. The reverse steps, of urea dissociation, were monitored using an analytical technique which permits direct determination of the concentration of liberated urea and does not require knowledge of extinction coefficients of intermediate species. Results imply that consecutive steps occur with rate constants in close to the statistical ratios of k(1):k(2):k(3) = 3:2:1 and k(-)(1):k(-)(2):k(-)(3) = 1:2:3. Rates indicate strong labilization of urea, compared to the case of mononuclear complex [Cr(urea)(6)](3+).  相似文献   

20.
Reactions of two hydrated cupric salts (CuCl(2).2H(2)O and Cu(ClO(4))(2).6H(2)O) with three azopyridyl ligands, viz. 2-[(arylamino)phenylazo]pyridine [aryl = phenyl (HL(1a)), p-tolyl (HL(1b)), and 2-thiomethyl phenyl (HL(1c))], 2-[2-(pyridylamino)phenylazo]pyridine (HL(2)), and 2-[3-(pyridylamino)phenylazo]pyridine (HL(3)), afford the mononuclear [CuClL(1)] (1), dinuclear [Cu(2)X(2)L(2)(2)](n)()(+) (X = Cl, H(2)O, ClO(4); n = 0, 1; 2, 3), and polynuclear [CuClL(3)](n)() (4) complexes, respectively, in high yields. Representative X-ray structures of these complexes 1-4 are reported. X-ray structure analysis of 4 reveals an infinite 1D zigzag chain that adopts a saw-tooth-like structure. Variable-temperature cryomagnetic measurements (2-300 K) on the complexes 2-4 have revealed weak magnetic interactions between the copper centers with J values -1.04, 9.88, and -1.31 cm(-1), respectively. Positive ion ESI mass spectra of the soluble complexes 1-3 are studied which provide the evidence for the integrity of the complexes also in solution. Visible range spectra of the complexes 1-3 in solution consist of intense and broad transitions in the range 700-600 nm. The solid-state spectrum of the insoluble copper complex 4, on the other hand, shows a structured band near 700 nm. The intensities of the transitions of the dinuclear complexes are much higher than those of the corresponding mononuclear copper complexes. Redox properties of the present copper complexes are reported. Notably, the dinuclear complex, 3, displays two successive redox processes: Cu(II)Cu(II) right harpoon over left harpoon Cu(II)Cu(I) right harpoon over left harpoon Cu(I)Cu(I). It catalyzes aerial oxidation of L-ascorbic acid. The catalytic cycle is most effective up to H(2)A/3 (H(2)A = L-ascorbic acid) molar ratio of 20:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号