首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transitions between the spin-split bands by spin-orbit interaction are relevant to many novel phenomena such as the resonant dynamical magnetoelectric effect and the spin Hall effect. We perform optical spectroscopy measurements combined with first-principles calculations to study these transitions in the recently discovered giant bulk Rashba spin-splitting system BiTeI. Several novel features are observed in the optical spectra of the material including a sharp edge singularity due to the reduced dimensionality of the joint density of states and a systematic doping dependence of the intraband transitions between the Rashba-split branches. These confirm the bulk nature of the Rashba-type splitting in BiTeI and manifest the relativistic nature of the electron dynamics in a solid.  相似文献   

2.
Electronic spectrum of astrophysically important molecule magnesium hydride (MgH) has been studied using configuration interaction methodology excluding and including spin–orbit coupling. Potential energy curves of several spin-independent (Λ?S) electronic states have been constructed and spectroscopic constants of low-lying bound Λ?S states within 8.2 eV of term energy are reported in the first stage of calculations. The X2Σ+ is identified as the ground state in the Λ?S level. In the subsequent stage, the spin–orbit interaction has been incorporated and its effects on the potential energy curves and spectroscopic features of different electronic states of the species have been investigated. The X2Σ+1/2 is identified as the spin–orbit (Ω) ground state of the species. Transition moments of several dipole-allowed transitions are computed in both the stages and radiative lifetimes of the corresponding excited states are computed. Electric dipole moments (µ) for a number of low-lying bound Λ?S states as well as several low-lying Ω-states are also calculated in the present study.  相似文献   

3.
In the present paper, we have theoretically investigated thermoelectric transport properties of armchair and zigzag graphene nanoribbons with Rashba spin–orbit interaction, as well as dephasing scattering processes by applying the nonequilibrium Green function method. Behaviors of electronic and thermal currents, as well as thermoelectric coefficients are studied. It is found that both electronic and thermal currents decrease, and thermoelectric properties been suppressed, with increasing strength of Rashba spin–orbit interaction. We have also studied spin split and spin density induced by Rashba spin–orbit interaction in the graphene nanoribbons.  相似文献   

4.
The electronic and crystal structures of SrMgF4 single crystals grown by the Bridgman method have been investigated. The undoped SrMgF4 single crystals have been studied using low-temperature (T = 10 K) time-resolved fluorescence optical and vacuum ultraviolet spectroscopy under selective excitation by synchrotron radiation (3.7–36.0 eV). Based on the measured reflectivity spectra and calculated spectra of the optical constants, the following parameters of the electronic structure have been determined for the first time: the minimum energy of interband transitions E g = 12.55 eV, the position of the first exciton peak E n = 1 = 11.37 eV, the position of the maximum of the “exciton” luminescence excitation band at 10.7 eV, and the position of the fundamental absorption edge at 10.3 eV. It has been found that photoluminescence excitation occurs predominantly in the region of the low-energy fundamental absorption edge of the crystal and that, at energies above E g , the energy transfer from the matrix to luminescence centers is inefficient. The exciton migration is the main excitation channel of photoluminescence bands at 2.6–3.3 and 3.3–4.2 eV. The direct photoexcitation is characteristic of photoluminescence from defects at 1.8–2.6 and 4.2–5.5 eV.  相似文献   

5.
3D hybrid organic perovskites, CH3NH3PbX3 (X = halogen), have recently been used to strongly improve the efficiency of dye sensitized solar cells (DSSC) leading to a new class of low‐cost mesoscopic solar cells. CsSnI3 perovskite can also be used for hole conduction in DSSC. Density functional theory and GW corrections are used to compare lead and tin hybrid and all‐inorganic perovskites. The room temperature optical absorption is associated to electronic transitions between the spin–orbit split‐off band in the conduction band and the valence band. Spin–orbit coupling is about three times smaller for tin. Moreover, the effective mass of relevant band edge hole states is small (0.17). The high temperature phase sequence of CsSnI3 leading to the room temperature orthorhombic phase and the recently reported phases of CH3NH3MI3 (where M = Pb, Sn) close to the room temperature, are also studied. Tetragonal distortions from the ideal cubic phase are analysed by a k · p perturbation, including spin–orbit effect. In addition, the non‐centrosymmetric phases of CH3NH3MI3 exhibit a splitting of the electronic bands away from the critical point. The present work shows that their physical properties are more similar to conventional semiconductors than to the absorbers used in DSSC. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
D. Bejan  C. Stan 《哲学杂志》2020,100(6):749-767
ABSTRACT

We theoretically investigated the influences of the magnetic field and light polarisation on the electronic and optical properties of a GaAs/GaAlAs pseudo-elliptic quantum ring, modelled by an outer ellipsis and an inner circle, in the presence of the Rashba and Dresselhaus spin–orbit interactions and Zeeman effect. We show that Aharonov-Bohm oscillations of the energy spectrum are not affected by the presence of the Zeeman effect alone but, in the presence of Rashba and Dresselhaus spin–orbit couplings, the periodicity of certain levels becomes hardly definite. The Zeeman effect generally enhances/diminishes the separation levels produced by Rashba/Dresselhaus interactions (SOI) and when both types of SOI are considered, the effect depends on their relative strength. The magnetic field can trigger spin-flip for each type of spin–orbit interaction and Zeeman effect or their combination through anticrossings in the energy spectra. Our results reveal that the absorption spectra are very sensitive to the magnetic field and light polarisation. For all polarisations considered, the magnetic field increment leads to the redshift or blueshift of some particular peaks (an effect of this ring geometry) and a better separation of the peaks. The x-polarised light determines spectra with many small, but separated peaks while the circular polarised light leads to spectra with large peaks of high amplitude.  相似文献   

7.
Quantum spin Hall effect in graphene   总被引:1,自引:0,他引:1  
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.  相似文献   

8.
Nonlinear optical properties, optical rectification coefficients and the second-order and third-order harmonic generation coefficients as a function of photon energy are dealt in a GaAs/Ga0.8Al0.2As quantum dot in the presence of electric field and the spin–orbit interactions. The Dresselhaus and the Rashba spin–orbit interactions are added in the Hamiltonian. The electric field-induced photoionization cross section with the normalized photon energy for an on-centre donor impurity in the quantum dot is studied. The effect of nonparabolicity is included in the Hamiltonian. The spin–orbit interaction as a function of photon energy is investigated. The computations are carried out within the framework of the single band effective mass approximation using variational technique and the compact density approach. It is found that the spin–orbit interaction coefficients show strong effects on the resonant position of harmonic generations. The results are compared with the recent investigations.  相似文献   

9.
In this article we study the role of Rashba spin–orbit coupling and electron–phonon interaction on the electronic structure of zigzag graphene nanoribbon with different width. The total Hamiltonian of nanoribbon is written in the tight binding form and the electron–electron interaction is modeled in the Hubbard term. We used a unitary transformation to reach an effective Hamiltonian for nano ribbon in the presence of electron–phonon interaction. Our results show that small Rashba spin orbit coupling annihilates the anti-ferromagnetic phase in the zigzag edges of ribbon and the electron–phonon interaction yields small polaron formation in graphene nano ribbon. Furthermore, Rashba type spin–orbit coupling increases (decreases) the polaron formation energy for up (down) spin state.  相似文献   

10.
The fundamental absorption edge of SmN is measured by the optical reflection and the transmission technique using a FTIR spectrometer. The MgF2 passivated thin films of SmN were grown by thermal evaporation. The optical spectra was collated in the energy range of 0.5 to 5.0 eV, and the optical energy gap is measured at 1.2 eV, the same as that of DyN. The measured value of the onset of the absorption in SmN does agree with that theoretically calculated, if the spin–orbit coupling is accounted for.  相似文献   

11.
The features of the optical properties of nanostructured samples of iron-yttrium garnet Y3Fe5O12 (YIG) in the range of 0.5 to 4.7 eV, which includes both the fundamental-absorption region and low-energy electron excitations, have been investigated by spectroscopic ellipsometry. The results are discussed in comparison with the measurement data of a YIG single crystal. The dispersion of the optical functions in nanostructured samples is significantly different from that for the single crystal: the spectral density is redistributed from the energy region above the fundamental absorption edge to the region below the edge. It has been shown that the energy positions of the main electronic transitions in nanostructured samples are on the whole the same as in the single crystal; at the same time, the intensity of low-energy transitions increases. The possible causes of this increase and the resolution of the fine absorption structure in the bandgap of nanostructured Y3Fe5O12 are discussed.  相似文献   

12.
13.
The optical absorption spectra from bismuth ferrite (BiFeO3) have been studied at high pressures up to 60 GPa in diamond anvil cells. An electronic transition at which the energy of the optical absorption edge decreases sharply from ~1.5 eV to zero has been observed at room temperature in a pressure range of 45–55 GPa. This indirectly indicates a insulator-metal transition. The observed electronic transition correlates with the recently revealed structural and magnetic transitions induced by high pressures in this crystal. The behavior of the optical absorption edge with decreasing the pressure is completely reversible in correlation with the reversibility of the magnetic transition. The “smearing” of the structural transition in pressure is caused by thermal fluctuations between the high-spin state and low-spin state of the Fe3+ ions near the transition.  相似文献   

14.
The optical spectra and the second-harmonic generation (SHG) are studied in a noncentrosymmetric GdFe3(BO3)4 magnet. In the region of weak absorption (α~20–400 cm?1) below ~3 eV, three absorption bands are distinguished, which can be unambiguously assigned to forbidden electronic transitions from the ground 6A1 state of the Fe3+ ion to its excited states 4T1(~1.4 eV), 4T2(~2 eV), and 4A1, 4E(~2.8 eV). Intense absorption begins in the region above 3 eV (α~2–4×105 cm?1), where two bands at ~4.0 and 4.8 eV are observed, which are caused by allowed electric dipole charge-transfer transitions. The spectral features of SHG in the 1.2–3.0-eV region are explained by a change in the SHG efficiency caused by a change in the phase mismatch. It is shown that in the weak absorption region, phase matching can be achieved for SHG.  相似文献   

15.
A sequence of magnetocaloric anomalies occurring with the change in a magnetic field H is predicted for an open nanowire with the Rashba spin–orbit coupling and the induced superconducting pairing potential. The nature of such anomalies is due to the cascade of quantum transitions related to the successive changes in the fermion parity of the nanowire ground state with the growth of the magnetic field. It is shown that the critical Hc values fall within the parameter range corresponding to the nontrivial values of the Z2 topological invariant of the corresponding 1D band Hamiltonian characteristic of the D symmetry class. It is demonstrated that such features in the behavior of the open nanowire are retained even in the presence of Coulomb interactions.  相似文献   

16.
Spin–orbit coupling in 5d transition metal oxides such as Ir oxides is expected to be strong due to large atomic number of Ir and electron correlation strength will be weak due to large radial extension of the 5d orbitals. Hence, various anomalous electronic properties often observed in these systems are attributed to large spin–orbit interaction strength. Employing first principles approaches, we studied the electronic structure of Y 2Ir2O7, which is insulating and exhibits ferromagnetic phase below 150 K. The calculated results reveal breakdown of both the above paradigms. The role of spin–orbit interaction is found to be marginal in determining the insulating ground state of Y 2Ir2O7. A large electron correlation strength is required to derive the experimental bulk spectrum.  相似文献   

17.
The fine structure of the Fabry–Perot interference as well as the interference of ordinary and extraordinary waves is investigated in ZnAs2 crystals. ε1, ε2, n and k optical constants are calculated in a wide spectral range of 0.4–12 eV. The anisotropy of electronic transitions at the minimum energetic interval of the band structure is investigated. The interband energetic intervals are determined deep into the absorption band. The observed transitions are discussed taking into account the available data from the band structure calculations.  相似文献   

18.
The fundamental optical properties in the paramagnetic phase of α-RuCl3 are studied at different temperatures in the photon energy interval 0.03 to 10 eV. Infrared reflectivity spectra show a transverse optical frequency at 0.038 eV (32 μm) for an Eu mode (Ec, in plane atomic displacements). The absorption spectra in the energy range 0.2 to 1 eV reveal three bands (0.29, 0.51, 0.71 eV) attributed to d-d electronic transitions. Reflectance and thermo-reflectance measurements indicate the onset of the charge-transfer transitions at 1.1 eV and show structure at 1.85, 2.55, 3.05, 4.5 eV. The marked reflectivity peak at 5.2 eV is probably related to p(Cl) → s(Ru) band-to-band transitions.  相似文献   

19.
Karan Singh  K. Mukherjee 《哲学杂志》2020,100(13):1771-1787
ABSTRACT

In this work, we report the results of DC susceptibility, AC susceptibility and related technique, resistivity, transverse and longitudinal magnetoresistance and heat capacity on polycrystalline magnetic semimetal CeAlGe. This compound undergoes antiferromagnetic type ordering around 5.2 K (T1). Under the application of external magnetic fields, parallel alignment of magnetic moments is favoured above 0.5?T. At low field and temperature, frequency and AC field amplitude response of AC susceptibility indicate the presence of spin–lattice relaxation phenomena. The observation of spin–lattice interaction suggests the presence of the Rashba–Dresselhaus spin–orbit interaction which is associated with inversion and time-reversal symmetry breaking. Additionally, the presence of negative and asymmetric longitudinal magnetoresistance indicates anomalous velocity contribution to the magnetoresistance due to the Rashba–Dresselhaus spin–orbit interaction which is further studied by heat capacity.  相似文献   

20.
In this paper we investigate the influence of spin–orbit interaction and two types of Rashba interaction (intrinsic and extrinsic) on magnetic and thermoelectric properties of graphene-like zigzag nanoribbons based on the honeycomb lattice. We utilize the Kane-Mele model with additional Rashba interaction terms. Magnetic structure is described by the electron-electron Coulomb repulsion reduced to the on-site interaction (Hubbard term) in the mean field approximation. We consider four types of magnetic configurations: ferromagnetic and antiferromagnetic with in-plane and out-of plane direction of magnetization. Firstly, we analyze the influence of extrinsic Rashba coupling on systems with negligible spin–orbit interaction, e.g. graphene of an appropriate substrate. Secondly, we discuss the interplay between spin–orbit and intrinsic Rashba interactions. This part is relevant to materials with significant spin–orbit coupling such as silicene and stanene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号