首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of poly(methyl methacrylate) (PMMA) and zinc bromide containing 11·25, 2 and 1 MMA chain units per ZnBr2 molecule, respectively, have been studied under temperature-programmed and isothermal conditions. The products of degradation have been identified and quantitative measurements have been made of the production of MMA, methyl bromide and methanol. Structural changes in the partially degraded polymer have also been followed, and the residue at 500°C has been shown to consist of zinc oxide, zinc and carbon.A mechanism has been suggested which is consistent with all the experimental observations. At room temperature, ZnBr2 forms a complex with PMMA. On heating, the most important process to occur at low temperatures (130–300°C) is the release of CH3Br and the formation of zinc methacrylate chain units. An alternative reaction of the original complex—also yielding CH3Br, and, in this case, producing, in addition, ZnO—leads to some anhydride rings in the polymer chain. Both of these new chain structures block the unzipping of PMMA to produce monomer. Methanol and CO are thought to result from the decomposition of single MMA units. At higher temperatures, the products are those expected from the decomposition of zinc polymethacrylate and the anhydride rings.  相似文献   

2.
The degradation behaviour of several different blends of poly(methyl methacrylate) (PMMA) and zinc bromide, under programmed heating to 500°C, has been studied using thermal volatilisation analysis and spectroscopic investigation of the volatile degradation products. The samples were in the form of films cast from a common solution of the components in acetone; these films are found to be transparent, indicating compatibility of PMMA and ZnBr2. From studies of the visible spectra of cobalt bromide, PMMA and blends of PMMA with CoBr2, it has been argued that complex formation occurs between the polymer and the transition metal halides: structures are suggested.When degraded alone, PMMA gives only monomer as the degradation product. In the blends with ZnBr2 (or with CoBr2), the polymer becomes considerably less stable and the pattern of degradation becomes very complex, with a range of volatile products, of which methyl bromide, carbon dioxide and methanol are the major constituents; carbon monoxide and methane are also formed. It is proposed that complex formation facilitates the release of methyl bromide as the first stage of breakdown, with the formation of zinc methacrylate units in the polymer chain; depolymerisation is prevented or severely inhibited, depending on the amount of ZnBr2 present.  相似文献   

3.
The degradation has been studied using thermogravimetry and thermal volatilization analysis; product analysis has been carried out by GLC and spectroscopy. The copolymers yield water and methanol below 300°; at higher temperatures, the products also include methyl methacrylate, carbon monoxide, carbon dioxide and methane. Quantitative comparison of the yields of methanol and methyl methacrylate has been made with predicted yields based upon sequence distribution calculations. Methanol is believed to result by two routes (i) intramolecular cyclization of adjacent ester and acid chain units at low temperatures, and (ii) fragmentation of ester units, in competition with depolymerization, at higher temperatures. Methyl methacrylate yields are substantially lower than the MMA content of the copolymer, as a result of these processes; some MMA units also appear in the product fraction volatile at degradation temperatures but not at ambient temperature. The partially-degraded copolymers develop anhydride ring structures in the chain as a result both of dehydration and of methanol production. The mechanisms of the various reactions are discussed.  相似文献   

4.
Experimental yields of methanol and methyl methacrylate (MMA), produced in degradation to 500° of copolymers of MMA with lithium, sodium and potassium methacrylates (KMA) respectively, have been compared with the amounts expected on the basis of composition and sequence distribution. Rates of formation of these products under isothermal conditions have also been measured and activation energies for MMA formation at various compositions in the KMA-MMA copolymer series have been evaluated. The activation energy changes from 35 ± 5 kcal mole?1 in PMMA to 52 ± 5 kcal mole?1 in a 75 mole% KMA copolymer, indicating increasing difficulty in depolymerization to MMA as the MMA sequences become shorter. The primary route to methanol is by a cyclization involving adjacent ester and salt units in the chain, giving anhydride rings and metal methoxide as the initial products. Methanol yields and the positions of the maxima in the yield vs copolymer composition curves, however, are found to be inconsistent with those predicted from sequence distribution calculations. It is argued that water retained by the copolymers plays a key part in the reaction scheme by converting the metal methoxide to methanol and hydroxide; the latter then causes conversion of ester groups to salt units, so permitting further cyclization in copolymers initially rich in MMA. Mechanisms are discussed in detail.  相似文献   

5.
Thermal analysis demonstrates that the thermal degradation of polymethacrylamide (PMAM) occurs in two well defined steps. The only volatile products formed in the first step, below 340, are ammonia and water while imide replaces amide absorption in the infra-red spectrum of the residue. Above 340° the major product consists of chain fragments (approximately 50%) in which a high proportion of the amide groups have been converted to cyclic imides. Copolymers with methyl methacrylate (MMA) comprising more than 35% methacrylamide (MAM) also degrade in two similar steps but the overall behaviour becomes progressively more like that of polymethylmethacrylate as the MAM content is decreased below 10%. In the first stage of the reaction in the copolymer, MMA and methanol are important products in addition to ammonia and water. Chain fragments remain the major product in the second stage but a number of minor, but very significant, products are also formed. All these products and the structural features of the chain fragments and residue have been accounted for mechanistically.  相似文献   

6.
The chemical reactions occurring in the thermal treatment of bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) blends have been investigated by nuclear magnetic resonance (NMR), mass spectrometry (MS), size exclusion chromatography (SEC), and thermogravimetry (TG). Our results suggest that in the melt-mixing of PC/PMMA blends, at 230°C, no exchange reactions occur and that only the depolymerization reaction of PMMA has been observed. In the presence of an ester-exchange catalyst (SnOBu2), an exchange reaction was found to occur at 230°C, but no trace of PC/PMMA graft copolymer has been observed. Instead, an exchange reaction between the monomer methyl methacrylate (MMA), generated in the unzipping of PMMA chains, and the carbonate groups of PC has been suggested. This is due to the diffusion of MMA at the interface or even into the PC domains, where it can react with PC producing low molar mass PC oligomers bearing methacrylate and methyl carbonate chain ends and leaving the undecomposed PMMA chains unaffected. The TG curves of PC/PMMA blends prepared by mechanical mixing and by casting from THF show two separated degradation steps corresponding to that of homopolymers. This behavior is different from that of a transparent film of PC/PMMA blend, obtained by solvent casting from DCB/CHCl3, which shows a single degradation step indicating that the degradation rate of PC is increased by the presence of PMMA in the blend. The thermal degradation products obtained by DPMS of this blend consist of methyl methacrylate (MMA), cyclic carbonates arising from the degradation of PMMA and PC, respectively, and a series of open chain bisphenol-A carbonate oligomers with methacrylate and methyl carbonate terminal groups. The presence of the latter compounds suggests a thermally activated exchange reaction occurring above 300°C between MMA and PC. The presence of bisphenol-A carbonate oligomers bearing methyl ether end groups, generated by a thermally activated decarboxylation of the methyl carbonate end groups of PC, has also been observed among the pyrolysis products. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1873–1884, 1998  相似文献   

7.
Nano- and submicrometer zinc(II) oxide particles were synthesized by the polyol method and were used for the preparation of ZnO/poly(methyl methacrylate) (ZnO/PMMA) composite materials by the chain polymerization of methyl methacrylate (MMA) in bulk. ZnO particles with an organophilic surface layer were homogeneously dispersed in the PMMA matrix. Very low concentrations (0.1 wt.%) of nano zinc oxide absorbed over 98% of UV light as determined by UV-vis spectroscopy. Nano zinc oxide (75 nm) increased the initial decomposition temperature of the PMMA matrix by 30-40 °C at concentrations of 0.1% and above. This was explained by the changes in the termination mechanism of MMA polymerization resulting in a reduced concentration of vinylidene chain ends. Nano ZnO also increased the MMA polymerization reaction rate and reduced the activation energy. Submicrometer ZnO showed lower UV absorption, thermal stabilization and no influence on the reaction kinetics indicating that average particle size is of vital importance for the properties of PMMA nanocomposites and for MMA polymerization.  相似文献   

8.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

9.
Although the thermal degradation of polyacrylonitrile (PAN) is unchanged by blending with poly(methyl methacrylate) (PMMA), the degradation of PMMA is profoundly altered in the presence of PAN. The low temperature phase of the reaction is hindered although monomer is still the predominating product. At higher temperatures the monomer production gives way to the appearance of methanol, carbon dioxide, carbon monoxide and chain fragments which incorporate a variety of carbonyl structures.These results are interpreted in terms of initial reaction of methyl methacrylate units with the ammonia formed by degradation of the PAN. The amide-ester copolymer thus formed undergoes a complex degradation process at higher temperatures which includes inter unit cyclisations, chain fragmentation and the formation of methanol and oxides of carbon. Mechanisms are proposed and discussed.  相似文献   

10.
Orientation and relaxation behavior in uniaxially stretched styrene-co-methyl methacrylate random copolymers was investigated. When compared at a reference temperature T = Tg + constant, orientation of methyl methacrylate units (MMA) decreases while styrene units orientation increases with a decrease in the styrene percentage. This behavior can be related to intermolecular interactions between MMA units and to the stiffness of styrene-MMA units, which do not undergo conformational changes upon stretching. Both monomer units relax the same in a given copolymer and chain relaxation increases when the styrene percentage increases. Orientation relaxation of styrene and MMA units can be reduced to two general relaxation master curves whatever the blend composition, when the results are compared at same monomeric friction coefficient. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The photothermal degradation of copolymers of methyl methacrylate (MMA) and n-butyl acrylate (n-BuA) covering the whole composition range has been studied at 165°.The gaseous products, which are relatively minor, are hydrogen, carbon monoxide and methane. The liquid products are predominantly MMA, with n-BuA, n-butanol and n-butyraldehyde as minor products. Infra-red spectral changes in the residue were attributed to lactone formation and associated with butanol formation as in the purely thermal reaction The “cold ring” or chain fragment fraction becomes increasingly more abundant as the n-BuA content of the copolymer is increased.All the products and principal features of the reaction are explained in terms of a radical process which is initiated by scission of pendant acrylate units and is propagated by a combination of depropagation and intra- and intermolecular transfer processes, the relative importance of which depends upon copolymer composition. Differences from the thermal reaction and the corresponding reaction in copolymers of methyl methacrylate and methyl acrylate are discussed.  相似文献   

12.
The photo- and radiation-induced degradation of poly(styrene-co-methyl methacrylate) (poly(St-co-MMA)) has been investigated by both electron spin resonance (ESR) and viscosity measurements. On ultraviolet irradiation of poly(St-co-MMA) film at 30°C in vacuum, the scission type radical from poly(methyl methacrylate) is produced in the initial stages of the photo-irradiation. The polystyryl radical from polystyrene gradually increases with irradiation time. The resulting ESR spectrum is composed of those of both radicals. The ratio of the radicals produced in poly(St-co-MMA) by photo-irradiation was estimated by comparison with simulated ESR spectra. The viscosity average molecular weight, Mv of photo-irradiated poly(St-co-MMA) decreases at short irradiation times and gradually increases at longer irradiation times. This phenomenon reflects the fact that the photo-degradation of the copolymer begins from the MMA component in poly(St-co-MMA). The γ-ray-induced degradation of poly(St-co-MMA) has also been examined by the same methods as those used in the photo-degradation and confirms that the degradation begins from the MMA component in the copolymer. The protective effect of polystyrene was also found for the radiation-induced degradation of the polymethyl methacrylate units in poly(St-co-MMA).  相似文献   

13.
Alternating copolymers of styrene (St) with electron-deficient olefins trisubstituted or tetrasubstituted with cyano and carboalkoxy groups have been subjected to 60Co γ-radiolysis together with a series of copolymers of methyl methacrylate (MMA) and St. The chain scission susceptibility GsGx determined by membrane osmometry drastically decreases as St is incorporated in poly(methyl methacrylate) (PMMA). Whereas the alternating St-MMA copolymer is slightly crosslinked upon irradiation, an alternating copolymer of St with diethyl 2-cyano-1,1-ethylenedicarboxylate maintains a fairly high degradation sensitivity (GsGx = 1.2). The reactive-ion etch rates were determined for the series of polymers in CF4/O2 (92/8). The etch resistance is significantly increased by introduction of St units in PMMA, and the highly substituted alternating copolymer etches as slowly as the MMA(50)—St(50) copolymers. Thus the alternating copolymer of NCCH=C(CO2Et)2 with St behaves like PMMA when exposed to high-energy radiation but is comparable to PSt in plasma environments.  相似文献   

14.
Photografting of poly(methyl methacrylate), PMMA chains on natural rubber (NR) chain backbones was studied in benzene solution using quinoline-bromine (Q-Br2) charge transfer complex as photoinitiator and MMA as monomer at 35°C in visible light. Analysis of overall products for determination of grafting efficiencies was done following a method of selective extraction of only the free rubber fraction by benzene-petroleum ether mixtures followed by separation of the NR-PMMA graft copolymer from free PMMA in the residue (taken in benzene solution) by fractional precipitation with methanol. High grafting efficiencies in the range of 75–95% were easily and generally obtained. Effects of variation of concentrations of initiator, rubber, and monomer on grafting efficiencies were examined and reported. Prior photodegradation of the rubber resulted in substantial lowering in grafting efficiencies. Overall mechanism of graft copolymerization has been discussed.  相似文献   

15.
Different concentrations of copolymer of (N-(4-chlorophenyl) acrylamide) (CA) with methyl methacrylate (MMA) were prepared and the reactivity ratio values of copolymerization were calculated using 1H NMR technique. Thermal analysis of the copolymers showed that the thermal stability is intermediate between poly(N-(4-chlorophenyl) acrylamide) (PCA) and poly(methyl methacrylate) (PMMA) homopolymers. Thermal degradation products of the PCA were identified by GC–MS techniques. It seems that the mechanism of degradation of PCA homopolymer is characterized by free radical formation followed by recombination along the backbone chain. The activation energies of the thermal degradation of the copolymers were calculated using Arrhenius relationship.  相似文献   

16.
Dispersion of fullerene, C60, by addition of polymethacrylate dispersant in methyl methacrylate (MMA) and incorporation of C60 into poly(methyl methacrylate) (PMMA) were investigated. Copolymers synthesized by radical copolymerization of MMA and 2-naphthyl methacrylate (NMA), poly(MMA-co-NMA), effectively dispersed C60 in MMA to form clusters of 20?nm. In these cases, addition of minimal 110 naphthyl groups per unit C60 molecule afforded to give clusters with minimum of 20?nm sizes. Furthermore, block copolymers, poly(MMA-b-NMA) with MMA/NMA mole ratio from 12:1 to 20:1, also efficiently dispersed C60 to give formation of clusters of 20?nm size by addition of minimal 40 naphthyl groups per unit C60 molecule, which was corresponding to approximate nine layers of naphthyl group in block copolymer adsorbed on the surface of the cluster. Hybrid films of C60/PMMA, prepared by casting of C60-dispersed solution containing PMMA, exhibited absorbance at 400?nm linearly increased with C60 content.  相似文献   

17.
甲基丙烯酸甲酯的反向原子转移自由基聚合反应 研究   总被引:3,自引:0,他引:3  
刘兵  胡春圃 《化学学报》2001,59(1):119-123
在较低的温度(60℃)和较低的AIBN/CuCl~2/配位剂摩尔比(1:2:4)条件下,用乙腈为溶剂,实现了甲基丙烯酸甲酯(MMA)的反向原子转移自由基聚合(RATRP)。联二吡啶(bpy)为配位剂时,所合成的聚甲基丙烯酸甲酯(PMMA)的分子量分布可低至1.08。用1,10-菲咯啉(phen)代替bpy,MMA的聚合反应速率加快,但其分子量分布稍宽(1.40左右),并进一步研究了bpy和phen作为混合配位剂时对MMA反向ATRP聚合的影响。用RATRP反应所得的带有卤素端基的PMMA作为苯乙烯ATRP的大分子引发剂,成功地合成了具有预期结构的苯乙烯与甲基丙烯酸甲酯嵌段共聚物,大分子引发剂的引发效率接近于1,说明在RATRP过程中由自由基引发剂引发MMA进行一般自由基聚合反应的可能性甚微。  相似文献   

18.
A well‐defined linear ABC triblock copolymer of ethylene oxide (EO), methyl methacrylate (MMA), and styrene (St) was prepared by sequential living anionic and photo‐induced charge transfer polymerization (CTP) using p‐aminophenol as parent compound. In the first step, the diblock copolymer of PEO‐b‐PMMA with a protected aniline end group at PEO end was prepared by initiating of phenoxo‐anion the polymerization of EO and MMA successively, then the diblock copolymer of PEO‐b‐PMMA via deprotection of aniline at PEO end constituted a binary initiation system with benzophenone (BP) by charge transfer complex mechanism to initiate the polymerization of St under UV‐irradiation. The GPC and NMR measurements support that in copolymerization, either in the first or second step, neither homopolymer nor side reactions, such as chain transfer or chain termination, was found. The effect of the concentration of PEOab‐PMMA and St, and the polarity of solvent on the polymerization rate (Rp) of CTP is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 825–833, 1999  相似文献   

19.
The aim of this study was to investigate the thermal degradability, and in particular, the thermal degradation mechanism of organophosphorus flame-retardant poly(methyl methacrylate) (PMMA). For this purpose thermogravimetry and direct pyrolysis mass spectrometry analyses were used. Release of diethylphosphinic acid, melamine, and several products involving Al-O-P and N-P linkages were detected from the organophosphorus additive containing aluminium diethylphosphinate, melamine polyphosphate and zinc borate. When incorporated in PMMA, reactions of diethylphosphinic acid, melamine and/or their derivatives with the ester group affected the decomposition pathways by generation of (C2H5)2POOCH3 and HNCO at relatively high temperatures.  相似文献   

20.
Copolymers of methyl methacrylate (MMA) with 2,3,5,6‐tetrafluorophenyl methacrylate (TFPMA), pentafluorophenyl methacrylate (PFPMA), and 4‐trifluoromethyl‐2,3,5,6‐tetrafluorophenyl methacrylate (TFMPMA) were investigated. All the three systems showed a random copolymerization character. The composition, glass transition temperature (Tg), and refractive index of the copolymers obtained were studied. Tgs of TFPMA/MMA and PFPMA/MMA copolymers were found to deviate positively from the Gordon–Taylor equation. However, Tgs of TFMPMA/MMA copolymers were well fit with the Gordon–Taylor equation. These results indicated the existence of interaction between MMA and either TFPMA or PFPMA units in copolymers. This interaction resulted in the enhancement of the Tg of MMA polymers through the copolymerization with TFPMA and PFPMA. The refractive index and the light transmittance of copolymers were close to those of PMMA. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号