首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
In the present study, pure and gold nanoparticle (Au NP)-doped titanium dioxide (TiO2) and cadmium oxide (CdO) thin film were prepared by the sol–gel method, and the effect of Au NP doping on the optical, structural and morphological properties of these thin films was investigated. The prepared thin films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet–visible–near infrared (UV–Vis–NIR) spectra. While the optical band increases from 3.62 to 3.73 for TiO2 thin films, it decreases from 2.20 to 1.55 for CdO thin films with increasing Au doping concentration. Analysis of XRD indicates that the intensities of peaks of the crystalline phase have increased with the increasing Au NP concentrations in all thin films. SEM images demonstrate that the surface morphologies of the samples were affected by the incorporation of Au NPs. Consequently, the most significant results of the present study are that the Au NPs can be used to modify the optical, structural and morphological properties of TiO2 and CdO thin films.  相似文献   

2.
The cadmium oxide (CdO) and F:CdO films have been deposited by spray pyrolysis method using cadmium acetate and ammonium fluoride as precursors for Cd and F ions, respectively. The effect of temperature and F doping on the structural, morphological, optical and Hall effect properties of sprayed CdO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption and electrical measurement techniques. TGA and DTA studies, indicates the formation of CdO by decomposition of cadmium acetate after 250 °C. XRD patterns reveal that samples are polycrystalline with cubic structure and exhibits (2 0 0) preferential orientation. Considerable broading of (2 0 0) peak, simultaneous shifting of corresponding Bragg's angle have been observed with respect to F doping level. SEM and AFM show the heterogeneous distribution of cubical grains all over the substrate, which are randomly distributed. F doping shifts the optical gap along with the increase in the transparency of CdO films. The Hall effect measurement indicates that the resistivity and mobility decrease up to 4% F doping.  相似文献   

3.
Nickel ferrite thin films were deposited by a pulsed laser deposition (PLD) technique on silicon substrate at room temperature in a vacuum of 5×10−5 mbar. The films were subjected to different annealing temperatures from 300–900°C and were also exposed to single shot energetic hydrogen ions using a Dense Plasma Focus (DPF) device. The changes induced in the films exposed at different distances from the top of the anode were investigated. The structural, morphological and magnetic properties of the annealed and exposed samples were investigated. X-ray diffraction (XRD) studies reveal the presence of a single phase of nickel ferrite after annealing. SEM micrographs indicate an increase in the grain size, both on annealing as well as on exposure to hydrogen ions. Annealing and hydrogen ion irradiation induced an enhancement in the magnetic moments. Laser droplets which are inherent in films deposited by laser ablation were found to be dispersed as a result of single shot hydrogen ion irradiation from the DPF.  相似文献   

4.
Nanocrystallites of cadmium oxide (CdO) thin films were deposited by sol–gel dip coating technique on glass and Si substrates. XRD and TEM diffraction patterns confirmed the nanocrystalline cubic CdO phase formation. TEM micrograph of the film revealed the manifestation of nano CdO phase with average particle size lying in the range 1.6–9.3 nm. UV–Vis spectrophotometric measurement showed high transparency (nearly 75% in the wavelength range 500–800 nm) of the film with a direct allowed bandgap lying in the range 2.86–3.69 eV. Particle size has also been calculated from the shift of bandgap with that of bulk value for the films for which the particles sizes are comparable to Bohr exitonic radius. The particle size increases with the increase in annealing temperature and also the intensity of XRD peaks increases which implies that better crystallinity takes place at higher temperature.  相似文献   

5.
Investigations on the laser irradiation effects on gold are explored in terms of plasma-plume dynamics and morphological and crystallographic changes. Annealed 4N gold samples were irradiated with a Q-switched Nd:YAG laser (53 mJ, 21 MW, 532 nm, and pulse width 6–8 ns) for plume dynamics using 10-ns gated fast photography. A Q-switched pulsed Nd:YAG laser (10 mJ, 1.1 MW, 1064 nm, and pulse width 9 ns) was used to irradiate the surface of the samples for morphological and crystallographic studies of laser-irradiated gold in a vacuum ~10?3 Torr. The annealed samples were exposed to 50 shots of a Nd:YAG laser (10 mJ, 1.1 MW, 1064 nm, and pulse width 9 ns). The investigation on the plume was done by using an intensified charged-couple device ICCD-5760/IR-UV camera. The morphological investigation of the irradiated surface was carried out by analyzing micrographs obtained using an Hitachi S 3000 H scanning-electron microscope (SEM). The crystallographic studies of the irradiated samples were performed by analyzing the XRD patterns obtained using an X’ Pert Pro Pan Analytical X-ray diffractometer. The investigation on gated ICCD images of the plume reveal that, at very earlier times, the plasma-plume expansion has a linear trend, whereas, at later times, the plasma-plume expansion is nonuniform. SEM micrographs exhibit the primary mechanisms of pulsed-laser ablation (PLA), such as hydrodynamic sputtering, thermal sputtering, exfoliation sputtering, and splashing. The surface morphology was explained in terms of crater formation, swelling, burning, nucleation, grain growth, and nonsymmetric heat conduction. The nonuniform thermal expansion of gold due to thermal-energy transfer is also studied by SEM micrographs, which was supported by XRD analysis. The structural analysis on the basis of XRD shows that the composition of the irradiated samples is not disturbed even after laser irradiation. The grain sizes also changed due to laser irradiation.  相似文献   

6.
Ag:ZnO/SiO_2复合薄膜的制备与光学性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用溶胶-凝胶法在玻璃衬底上制备Ag掺杂于ZnO层的Ag:ZnO/SiO2(AZSO)复合薄膜,采用XRD、SEM、UV-Vis和PL谱等手段对样品的晶体结构、微观形貌、透过率、吸收率及光致发光性能等进行表征,并观察了掺Ag量对复合薄膜光学性能的影响。XRD结果表明:样品经300℃退火处理后出现ZnO及单质Ag衍射峰;由SEM结果可观察到AZSO复合薄膜颗粒分散均匀,表面致密,其断面照片显示了薄膜的双层结构。UV-Vis吸收光谱结果表明:随着复合薄膜中Ag含量的增加,Ag与ZnO之间的电子转移及Ag颗粒的变大促使Ag的特征吸收峰呈现红移和宽化,样品的透过率也随之降低,吸收边向短波长方向移动,禁带宽度减小。PL谱结果表明:由于Ag的掺入减少了ZnO内空穴浓度并对复合薄膜的结构缺陷进行补偿,以及Ag在440nm附近的特征吸收,降低了复合薄膜的发光强度。  相似文献   

7.
Nanocrystallites of cadmium oxide (CdO) thin films were deposited by sol–gel dip coating technique on glass and Si substrates. XRD and TEM diffraction patterns confirmed the nanocrystalline cubic CdO phase formation. TEM micrograph of the film revealed the manifestation of nano CdO phase with average particle size lying in the range 1.6–9.3 nm. UV–Vis spectrophotometric measurement showed high transparency (nearly 75% in the wavelength range 500–800 nm) of the film with a direct allowed bandgap lying in the range 2.86–3.69 eV. Particle size has also been calculated from the shift of bandgap with that of bulk value for the films for which the particles sizes are comparable to Bohr exitonic radius. The particle size increases with the increase in annealing temperature and also the intensity of XRD peaks increases which implies that better crystallinity takes place at higher temperature.This revised version was published online in August 2005 with a corrected issue number.  相似文献   

8.
The effects of laser irradiation on the surface, structure and optical properties of SnO thin films deposited on glass substrates using electron beam evaporation, are investigated. The thin film samples are irradiated using fundamental beam at 1064 nm from Q-switched Nd:YAG pulsed laser with different power densities. Structural morphology of the film is investigated using XRD patterns and AFM image. Both XRD pattern and AFM image show increase in grain size of the film with increasing laser power density. Other optical phenomena, photoluminescence emission, transmission, refractive index determination and optical band gaps calculations are also carried out at various laser power densities. Results from all these investigations reveal expansion in grain size of the crystalline SnO thin film with increasing laser power density.  相似文献   

9.
Cadmium selenide (CdSe) thin films were deposited on a glass substrate using the thermal evaporation method at room temperature. The changes in the optical properties (optical band gap and absorption coefficient) after irradiation by TEA N2 laser at different energies were measured in the wavelength range 190–800 nm using a spectrophotometer. It was found that the optical band gap is decreased after irradiating the thin films. The samples were characterized using X-ray diffraction (XRD), and the grain size of the CdSe thin film was calculated from XRD data, which was found to be 41.47 nm as-deposited. It was also found that grain size increases with laser exposure. The samples were characterized using a scanning electron microscope and it was found that big clusters were formed after irradiation by TEA N2 laser.  相似文献   

10.
Pulsed laser deposition (PLD) method was used to obtain bioglass (BG) thin film coatings on titanium substrates. An UV excimer laser KrF* (λ = 248 nm, τ = 25 ns) was used for the multi-pulse irradiation of the BG targets with 57 or 61 wt.% SiO2 content (and Na2O-K2O-CaO-MgO-P2O5 oxides). The depositions were performed in oxygen atmosphere at 13 Pa and for substrates temperature of 400 °C. The PLD films displayed typical BG of 2-5 μm particulates nucleated on the film surface or embedded in. The PLD films stoichiometry was found to be the same as the targets. XRD spectra have shown, the glass coatings obtained, had an amorphous structure. One set of samples, deposited in the same conditions, were dipped in simulated body fluids (SBFs) and subsequently extracted one by one after several time intervals 1, 3, 7, 14 and 21 days. After washing in deionized water and drying, the surface morphology of the samples and theirs composition were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), IR spectroscopy (FTIR) and energy dispersive X-ray analysis (EDX). After 3-7 days the Si content substantially decreases in the coatings and PO43− maxima start to increase in FTIR spectra. The XRD spectra also confirm this evolution. After 14-21 days the XRD peaks show a crystallized fraction of the carbonated hydroxyapatite (HAP). The SEM micrographs show also significant changes of the films surface morphology. The coalescence of the BG droplets can be seen. The dissolution and growth processes could be assigned to the ionic exchange between BG and SBFs.  相似文献   

11.
We studied the effect of an organic surfactant, dextrin, concentration on structural, morphological and optical properties of nanostructured CdO films deposited on glass substrates by using an easy and low-cost SILAR method. Microstructures of the nanostructured CdO films were optimized by adjusting dextrin concentration. XRD, SEM and UV–Vis Spectroscopy were used to study phase structure, surface morphology and optical properties of CdO films. Furthermore, effects of dextrin concentration on the surface roughness characteristics of CdO samples were reported. The results showed that the presence of organic surfactant highly affected the physical properties of CdO nanomaterials.  相似文献   

12.
Nanostructured ZnO:Mn thin films have been prepared by sol–gel dip coating method. The content of Mn in the sol was varied from 0 to 12 wt%. The effect of Mn concentration on the optical, structural, and morphological properties of ZnO thin films were studied by using Fourier Transform Infrared (FTIR), UV–visible and photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). XRD results showed that the films have hexagonal wurtzite structure at lower content of Mn. The diffraction peaks corresponding to ZnO disappeared and two diffraction peaks of MnO2 and Mn3O4 appeared at the highest value of doping concentration (viz., 12 wt%). SEM results revealed that the surface smoothness of the films improved at higher content of Mn. The optical band gap of the films decreased from 3.89 to 3.15 eV when the Mn concentration increased from 0 to 12 wt%. The PL spectra of the films showed the characteristic peaks linked to band-to-band, green and yellow emissions. Besides, the PL intensity of the samples decreased with increase in Mn concentration.  相似文献   

13.
Laser-induced darkening and crystallization of ZnTe-based thin films is reported. ZnTe thin films of 1500-nm thickness were deposited on bare and Zn buffer layered borosilicate glass substrates. The as-deposited films were subjected to laser irradiation at 532 nm. The as-deposited films were amorphous but transformed to the crystalline state under influence of the laser treatment. The X-ray diffraction patterns revealed that the ZnTe crystallized in the zinc blende structure. In addition, presence of peaks from Te was observed, signifying the dissociation of ZnTe. The spectral transmission of the films decreased by more than 15 % under the influence of the laser irradiation and this was accompanied by a red shift in the band gap. These results clearly point to the occurrence of laser-induced darkening and crystallization of the films. To understand the mechanisms of darkening and crystallization, all the films were annealed at 500 °C for 60 min. Similar to the laser-irradiated samples, the thermally annealed films showed an amorphous–crystalline transition, presence of Te in the X-ray diffraction patterns as well as a large decrease in spectral transmission (>70 %). Photoinduced emission analysis carried out as a function of laser intensities indicated a strong red shift of about 51 meV in emission energy with increase in laser intensity due to the photodarkening. The peak position of the emission spectrum can be tuned by increasing the laser intensity and is completely reversible with decrease in laser intensity. It is proposed that laser-induced darkening occurs due to the dissociation of ZnTe into ZnTe and Te and that crystallization is a consequence of laser annealing.  相似文献   

14.
Tungsten nitride thin films were deposited on stainless steel-304 substrates by using a low energy (2 kJ) Mather type plasma focus device. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and microhardness are used to study the surface of treated samples. The XRD analysis shows that the degree of crystallinity of deposited thin films strongly depends on axial and angular positions of samples. The SEM micrographs of the deposited films at different angular positions (0°, 10° and 30°) and axial position of 8 cm show that the content of WN sub-micro crystalline structures on the surface of deposited films decreased with increasing the angle with respect to anode axis. From AFM results we observe that for the sample deposited at 8 cm and 0° axial and angular positions, respectively, the most uniform surface and the most homogenous distribution of grains are obtained. Also the hardness results show that the highest mechanical hardness is obtained when the film is deposited at 8 cm and 0° axial and angular positions, respectively.  相似文献   

15.
采用脉冲激光沉积(PLD)技术,在Si(100)衬底上制备出高度c轴取向的ZnO薄膜。通过X射线衍射(XRD)谱,扫描电镜(SEM)和室温光致发光(PL)光谱的测量,研究了生长气氛压强的改变对薄膜结构和光致发光的影响。实验结果表明,当氧压从10Pa升高到100Pa时ZnO(002)衍射峰的半峰全宽(FWHM)增大。可以认为这是由于较高的氧压下,到达衬底表面的离子动能减小。这样部分离子没有足够的能量迁移到生长较快的(002)面,c轴取向变差,导致(002)衍射峰的强度降低,半峰全宽增大。随着氧压增大,紫外发光强度增强。这可能是氧压变大,薄膜的化学配比升高,说明化学配比对UV发光的影响要大于薄膜微结构的影响。改变氧气压强对薄膜的表面形貌也有较大的影响。  相似文献   

16.
This work describes the use of focused, high-intensity light from a Ti:sapphire laser that generates femtosecond pulses to irradiate mixture of CeO2 and Tb4O7 under ambient conditions. The prepared samples were investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). XRD and XPS measurement results demonstrated that solid solution CeTbO3+δ with cubic fluorite structure has been synthesized on the irradiated target surface. SEM micrographs showed that the ultra-short laser irradiation resulted in the formation of foamy structure and spherical particles with size varying from about 30 to 200 nm. The formation mechanism has been discussed in detail.  相似文献   

17.
Two kinds of cadmium sulfate (CdS) thin films have been grown at 600 °C onto Si(111) and quartz substrates using femtosecond pulsed laser deposition (PLD). The influence of substrates on the structural and optical properties of the CdS thin films grown by femtosecond pulsed laser deposition have been studied. The CdS thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), photoluminescence (PL) and Raman spectroscopy. Although CdS thin films deposited both on Si(111) and quartz substrates were polycrystalline and hexagonal as shown by the XRD , SEM and AFM results, the crystalline quality and optical properties were found to be different. The size of the grains for the CdS thin film grown on Si(111) substrate were observed to be larger than that of the CdS thin film grown on quartz substrate, and there is more microcrystalline perpendicularity of c-axis for the film deposited on the quartz substrate than that for the films deposited on the Si substrate. In addition, in the PL spectra, the excitonic peak is more intense and resolved for CdS film deposited on quartz than that for the CdS film deposited on Si(111) substrate. The LO and TO Raman peaks in the CdS films grown on Si(111) substrate and quartz substrate are different, which is due to higher stress and bigger grain size in the CdS film grown on Si(111) substrate, than that of the CdS film grown on the amorphous quartz substrate. All this suggests that the substrates have a significant effect on the structural and optical properties of thin CdS films. PACS 81.15.Fg; 81.05.Ea; 78.20.-e; 78.67.-n; 42.62.-b  相似文献   

18.
The high exciton binding energy and band gap energy of ZnO thin films open the prospect of fabricating semiconductor lasers in the ultraviolet spectral range. A prerequisite for laser diode fabrication is highly p-doped ZnO which was not reproducibly obtained up to now. Without intentional doping ZnO exhibits n-type conduction. ZnO thin films have been obtained by radio-frequency assisted pulsed laser deposition. A metallic Zn target was used for ablation in an oxygen and nitrogen RF discharge. The electrical and morphological properties of the films grown on Si were studied by Atomic Force Microscopy (AFM), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), optical absorption and Hall Effect measurements for different ratios between the nitrogen and oxygen content. The AFM images of the as-grown ZnO films reveal high quality surfaces with low values for the surface roughness and a sharp distribution of grains sizes as an effect of the RF discharge. The XRD patterns for all samples exhibit only (002) and (004) peaks indicating that the c-axis is always oriented normal to the substrate surface. The films present p-type conductivity with different carrier concentration and mobility depending on the nitrogen/oxygen ratio.  相似文献   

19.
ABSTRACT

ZnTe (Zinc Telluride) is a potential semiconducting material for many optoelectronic devices like solar cells and back contact material for CdTe-based solar cells. In the present study, ZnTe thin films were prepared by thermal evaporation technique and then irradiated with 120?MeV Si9+ ions at different fluences. These films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–Visible spectroscopy techniques. XRD study confirms increased crystallinity and grain growth for post-irradiated ZnTe thin films for fluences, up to 1?×?1011 ions cm?2. However, the grain size and crystallinity decreased for higher fluence-exposed samples. SEM images confirm the observed structural properties. Modification of the surface morphology of the film due to the ion irradiation with different fluences is studied. Optical band gap of film is decreased from 2.31?eV (pristine) to 2.17?eV after irradiation of Si9+ ions.  相似文献   

20.
ZnO:V薄膜后退火处理前后的微结构与发光特性   总被引:1,自引:2,他引:1       下载免费PDF全文
张丽亭  魏凌  张杨  张伟风 《发光学报》2007,28(4):561-565
利用溶胶-凝胶(Sol-gel)法在单晶硅(100)衬底上分别制备了ZnO:V薄膜和纯ZnO薄膜。为进一步研究后退火对ZnO:V薄膜结构和发光性质的影响,在两段式快速退火后又在800℃下进行了后退火处理。X射线衍射的结果表明:后退火处理前,钒(V)的掺入使ZnO结晶质量变差,而800℃退火处理后,从ZnO的衍射峰中可以看出,相对于无V杂样品其结晶质量变好。扫描电子显微镜形貌图中可以看出制备的样品薄膜颗粒大小均匀,薄膜致密度较高。光致发光(PL)谱的研究表明:ZnO:V薄膜在800℃退火处理后,紫外和绿带发光峰均增强,但紫外发光峰增强得更多;与同样条件下制备的纯ZnO薄膜的PL谱比较,发现V掺杂后样品的紫外激子复合发光峰的强度明显增强且峰位发生蓝移,而缺陷引起的绿带发光峰的强度降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号