首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyoxometalates (POM) supported on zirconia, H3PW12O40/ZrO2, were prepared by incorporating polyphosphotungstate into a zirconia matrix via sol-gel technique that involving the hydrolysis of zirconium (IV) n-butoxide, Zr (n-OBu)4, as the ZrO2 source. This insoluble and readily separable catalyst was characterized by using XRD, FT-IR, SEM, and UV diffuse reflectance spectroscopy (UV-DRS), indicating that the polyphosphotungstate was chemically attached to the zirconia supports, and primary Keggin structure remained intact. The photocatalytic and sonocatalytic activity of the supported polyphosphotungstate was tested via degradation of different dyes in aqueous solutions. The POM-ZrO2 nanocomposite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure ZrO2.  相似文献   

2.
We prepared NaNbO3 by several methods, namely solid-state reaction (SSR), hydrothermal (HT) and polymerized complex (PC) methods, and investigated the relationships between the photocatalytic activity and the particle size and morphology. The photocatalytic activity was evaluated by H2 evolution from an aqueous methanol solution and pure water splitting in the presence of the Pt(0.5 wt%)/NaNbO3 and RuO2(1.25 wt%)/NaNbO3, respectively. It is found that the sample prepared by PC with smallest particles exhibits the highest photocatalytic activity in both reactions. Moreover, the HT sample with the cubic and rectangular shape also shows the enhanced photocatalytic activity for H2 evolution from an aqueous methanol solution in comparison with that of the sample prepared by SSR.  相似文献   

3.
Ag/TiO2 sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. TiCl4 was converted to Ti(OH)4 gel. The Ag/TiO2 sol was prepared by a process where H2O2 was added and then heated at 90–97 °C. After condensation reaction and crystallization, a transparent sol with suspended Ag/TiO2 was formed. Ag/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, contact angle analysis, and X-ray photoelectron spectroscopy. The photocatalytic properties of Ag/TiO2 film were evaluated by degradation of methylene blue in aqueous solution under UV light irradiation. The suspended Ag/TiO2 particles were rhombus primary particles with the major axis ca. 40 nm and the minor axis ca. 10 nm. Ag nanoparticles were well dispersed on TiO2 and the particle size was only 1–2 nm. Ag could restrain the recombination of photo-generated electrons and holes effectively. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The thin film had strong hydrophilicity after being illuminated by UV light. Ag/TiO2 film showed a significant increase in photocatalytic activity compared to the TiO2 film. The high amount of surface hydroxyls on Ag/TiO2 film also played an important role in its photocatalytic activity.  相似文献   

4.
Radiofrequency plasma polymerization in combination with direct current reactive magnetron sputtering is utilized for the synthesis of TiO2/plasma polymerized aniline nanocomposite thin films. In the composite film, X-ray diffraction measurements reveal formation of nanocrystalline rutile TiO2 of crystallite size 3.6 nm. Due to continuous bombardment of plasma species during simultaneous magnetron sputtering and plasma polymerization, the precursors of polymerization are broken and few functional groups are retained in the composite film. The plasma polymerized aniline has the direct optical band gap of 3.55 eV and the nanocrystalline rutile TiO2 is wide gap semiconductor with indirect gap of 3.20 eV which suggests the existence of an energy barrier at the interface in the composite form. The ac conductivity of composite film shows significant improvement as compared to plasma polymerized aniline film and sputtered rutile TiO2 film. The composite film may find potential application as antistatic coatings.  相似文献   

5.
CdS/TiO2 nanocomposites were prepared via a simple wet chemical method, and characterized through X-ray diffraction (XRD) and transmission electron microscopy (TEM). Their ability to degrade Acid Rhodamine B was investigated under visible light irradiation. The results indicate that CdS/TiO2 nanocomposite with a mass ratio of 4:1(TiO2:CdS) showed high photocatalytic activity and the CdS loaded on TiO2 nanotube surface exhibited a hexagonal phase. The dispersion of CdS on TiO2 nanotube surface had an important effect on the degradation efficiency of pollutant, which provides a strategy for practical industry application.  相似文献   

6.
ZnO/ZrO2 nanocomposites with different ZnO: ZrO2 molar ratios (2:1, 1:1, and 1:2)were prepared by sol gel approach under ultrasonic irradiation. For preparation of the nano-composites, the ZnO gel was directly incorporated into the ZrO2 gel at different molar ratios. The reaction mixture was stirred continuously for two days and then it was ultrasonoicated for 30 min. The filtrated composite gel was washed, and then calcinated at 300 °C in furnace for 3 h. X-ray powder diffraction patterns exhibited well-formed crystal structures and pure crystalline phases in the synthesized nanoparticles (NPs). The FT-IR analyses indicated that the positions of peaks related to Zn-O and Zr-O absorption bands did not change in nano-composites. In addition, FESEM images indicated uniform spherical morphology of the NPs. The highest photo-degradation performance of Congo red (as a model water pollutant) was obtained by 1:2molar ratio of ZrO2: ZnO in the nano-composite. The particle size and band gap were considered as important factors on nano-catalysts performance. Furthermore, the effects of ultrasonic irradiation, pH, and the concentration of pollutant in solution were investigated on photocatalytic performance of optimum nanocomposite.  相似文献   

7.
In this article, we describe a new method to prepare a ZnO and conjugated polymer nanocomposite and its application in bulk-heterojunction solar cells. The composite was composed of zinc oxide (ZnO) and poly(phenylene vinylene)/poly(vinyl alcohol) (PPV/PVA). For the preparation, the composite was prepared first through the complex reaction between Zn2+ ion and –OH of the PVA–PPV precursor by simply mixing zinc salts and a PVA–PPV precursor aqueous solution at 70 °C. By addition of a concentrated aqueous ammonia into the system, highly regular Zn(OH)2 nanodots were formed and dispersed in the PVA/PPV precusor mixed solution. The PVA/PPV precursor can well bind Zn2+ ion through complex interaction, so act as a template to direct the distribution of ZnO in the process. The nanocomposite films were finally obtained by solution casting and subsequently treated by heating samples at 160 °C for 6 h. TEM observations showed that ZnO nanodots uniformly dispersed in PVA–PPV mixtures. The resulting nanocomposite films possess a large interfacial area between the electron donor and acceptor of the bulk-heterojunction. Improved charge seperation and collection are evidenced by the large photoluminescence intensity difference between pure PPV and composites films, which result in the increase in both open circuit voltage and short circuit current of the hybrid solar cells.  相似文献   

8.
Flower-like Bi12TiO20 hierarchical nanostructures composed of numerous nanobelts were synthesized at 180 °C within 1 h by a microwave-assisted hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB) for the first time. The as-prepared products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet–visible (UV–vis) absorption spectroscopy. Furthermore, the hierarchical Bi12TiO20 nanostructures exhibited higher photocatalytic activities in the degradation of Rhodamine B under visible-light irradiation than that of the samples prepared without CTAB. In addition, the role of CTAB cationic surfactant has been investigated thoroughly and a possible mechanism is proposed.  相似文献   

9.
Lei Zhao 《Applied Surface Science》2008,254(15):4620-4625
Nitrogen-doped titanium dioxide (TiO2−xNx) thin films have been prepared by pulse laser deposition on quartz glass substrates by ablated titanium dioxide (rutile) target in nitrogen atmosphere. The x value (nitrogen concentration) is 0.567 as determined by X-ray photoelectron spectroscopy measurements. UV-vis spectroscopy measurements revealed two characteristic deep levels located at 1.0 and 2.5 eV below the conduction band. The 1.0 eV level is attributable to the O vacancy state and the 2.5 eV level is introduced by N doping, which contributes to narrowing the band-gap by mixing with the O2p valence band. The enhanced degradation efficiency in a broad visible-light range was observed from the degradation of methylene blue and methylene orange by the TiO2−xNx film.  相似文献   

10.
To improve the photocatalytic application performances of TiO2, in this work, firstly CdS modified Degussa P25 TiO2 (CdS/TiO2) composites were prepared by two methods, sol-gel method and precipitation method. Next they, sol-gel-CdS/TiO2 (sg-CdS/TiO2) and precipitation-CdS/TiO2 (pp-CdS/TiO2), were loaded on activated carbon fibers (ACFs) by dip-coating method using the sodium carboxymethyl cellulose as adhesives. The composites were characterized by XRD, UV-vis absorbance spectra, SEM, EDS and BET. The photocatalytic activities under sunlight were investigated by the degradation of methylene blue. The results showed that CdS/TiO2 composites were mainly composed of anatase-TiO2 and little CdS cubic phases. The absorption wavelengths of sg-CdS/TiO2 and pp-CdS/TiO2 composites were extended to 590 nm and 740 nm, respectively. The absorption edge had a pronounced ‘red shift’. From EDS analysis, the elemental contents of CdS/TiO2 were mainly Ti and O and a small quantity of S and Cd. CdS/TiO2 loaded on ACFs were in the form of small clusters, but not very uniform; compared with the original ACFs, the surface area and pore volume of CdS/TiO2/ACFs decreased slightly, respectively, while the average pore diameter was not changed. The photodegradation rate of methylene blue under sunlight with CdS/TiO2/ACFs composites was markedly higher than that of P25-TiO2/ACFs, and the effect of pp-CdS/TiO2/ACFs composites was better than that of sg-CdS/TiO2/ACFs, when irradiated for 180 min, and the photodegradation rate of methylene blue reached to 90.1%. The photodegradation kinetics of the methylene blue fitted with the Langmuir-Hinshelwood equation. The apparent reaction rate constants of sg-CdS/TiO2/ACFs and pp-CdS/TiO2 were 0.0105 min−1 and 0.0146 min−1, respectively, which were about 1.3-1.7 times as large as that of P25-TiO2/ACFs.  相似文献   

11.
ABSTRACT

For a comprehensive understanding of the PVA/CdS nanocomposite properties, it is essential to select the suitable method for their preparation as well as elucidate the interfacial interactions, which still need support. CdS nanoparticles have been prepared by thermolysis method under the flow of nitrogen. Rietveld refinement of x-ray data shows that all the CdS samples have both cubic and hexagonal structures. Then PVA/CdS films were prepared by ex-situ technique. Samples from PVA/CdS nanocomposite have been irradiated with gamma doses in the range 10–120?kGy. The implanting of CdS NPs into PVA matrix was confirmed by XRD hand in hand with UV–vis and FTIR spectroscopic techniques. UV/VIS absorption spectra confirm the formation of hybridized film CdS/PVA nanocomposite with a refractive index in the range of 1.32–1.48 (at 500?nm). UV/VIS measurements were also used in calculating different optical parameters such as refractive index, extinction coefficient and optical band gap energy. Additionally, Tauc’s relation was used to determine the type of electronic transition. It is found that the gamma irradiation in the dose range 30-90?kGy led to a more compact structure of PVA/CdS nanocomposite and causes proper dispersion of CdS nanoparticles in the PVA matrix. This led to the formation of coordination reaction between OH of PVA and CdS nanoparticles, resulted in an increase in refractive index and the amorphous phase. Also, the gamma irradiation reduces the optical energy gap from 4.53 to 2.19?eV, and accompanied with an increase in the Urbach energy from 2.28 to 4.46?eV, at that dose range which could be attributed to the increase in structural disorder of the irradiated PVA/CdS nanocomposites due to crosslinking. Further, the color intensity ΔE, which is the color difference between the non-irradiated sample and the irradiated ones, was increased, from 0 to 10.8, with increasing the gamma dose, convoyed by an increase in the red and yellow color components.  相似文献   

12.
Silica-tin material has been synthesized by simple sol-gel method using rice husk ash as the source of silica and cetyltrimethylammonium bromide as the surfactant at room temperature. Calcination of the material at 500 °C for 5 h gave nanotubes with external diameter of 2-4 nm and an internal diameter of 1-2 nm. The BET specific surface area was found to be 607 m2 g−1. Nitrogen sorption analysis exhibits a type IV isotherm with H3 hysteresis loop. The powder X-ray diffraction pattern showed that the material is amorphous. The photocatalytic activity of the prepared material was studied towards degradation of methylene blue under UV-irradiation. According to the experimental results the silica-tin nanotubes exhibit high photocatalytic activity compared to pure rice husk silica.  相似文献   

13.
利用超声喷雾热解法在玻璃衬底上制备了不同沉积温度下的氮掺杂纳米TiO2薄膜,并525℃的退火处理.通过SEM,XRD和UV-Vis透过光谱等表征手段研究了TiO2薄膜表面形貌、结构特性和光催化特性,并探讨了掺杂作用机理.SEM结果表明,在400℃温度下掺N(原子数分数4%)的TiO2薄膜表面比较均匀,致密性好;XRD分析得出,该薄膜是多晶锐钛矿结构;UV-Vis透过光谱分析得出,该薄膜在可见光区的平均透过率为82%,吸收边红移77 nm,计算得知其禁带宽度变小.在紫外光的照射下,氮掺TiO2薄膜对亚甲基蓝溶液具有良好的光催化降解作用,降解率可达46.6%.  相似文献   

14.
SnO2 nanospheres have been synthesized by microwave-assisted hydrothermal method from the starting materials of citric acid and tin metallic particles. From the results of SEM and TEM images, it can be found that the SnO2 nanospheres are uniform with diameter of ~100 nm and aggregated by SnO2 nanocrystals with size of 8–10 nm. The photoluminescence spectrum of the nanospheres shows a peak at ~330 nm and a cutoff wavelength of around 400 nm. The pronounced photocurrent was recoded from the as-prepared SnO2 nanospheres assembled on a Mo thin sheet under the UV illumination, which is suggested for the potential application of UV photodetector.  相似文献   

15.
16.
N,W codoped TiO 2 $\mathrm{TiO}_{2}$ nanorods were synthesized via a one-step hydrothermal method using ammonium metatungstate as the nitrogen and tungstate sources. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS). The results indicated that the N,W codoped TiO 2 $\mathrm{TiO}_{2}$ nanorods exhibited a higher photocatalytic activity under visible light irradiation compared with P25 and undoped TiO 2 $\mathrm{TiO}_{2}$ , because the codoping of N and W ions not only extended the visible light absorption but also promoted the separation of the photogenerated electrons and holes.  相似文献   

17.
TiO2/SiOx double-layers have been prepared at room temperature by RF magnetron sputtering. The TiO2 top-layer was deposited in an Ar atmosphere, while the SiOx bottom-layer was deposited in an Ar/O2 atmosphere. Samples were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and photoluminescence techniques. The photocatalytic activity of the samples was evaluated by the photodegradation of methylene blue; the results showed that the photocatalytic activity of the TiO2/SiOx double-layers was superior to that of the TiO2 single-layers. The presence of the SiOx bottom-layer improved the photocatalytic activity of the TiO2 layer because it may act as a trap for electrons generated in the TiO2 layer thus preventing electron-hole recombinations.  相似文献   

18.
A simple solid-state method has been applied to synthesize Ni/reduced graphene oxide (Ni/rGO) nanocomposite under ambient condition. Ni nanoparticles with size of 10–30 nm supported on reduced graphene oxide (rGO) nanosheets are obtained through one-pot solid-state co-reduction among nickel chloride, graphene oxide, and sodium borohydride. The Ni/rGO nanohybrid shows enhanced catalytic activity toward the reduction of p-nitrophenol (PNP) into p-aminophenol compared with Ni nanoparticles. The results of kinetic research display that the pseudo-first-order rate constant for hydrogenation reaction of PNP with Ni/rGO nanocomposite is 7.66 × 10?3 s?1, which is higher than that of Ni nanoparticles (4.48 × 10?3 s?1). It also presents superior turnover frequency (TOF, 5.36 h?1) and lower activation energy (Ea, 29.65 kJ mol?1) in the hydrogenation of PNP with Ni/rGO nanocomposite. Furthermore, composite catalyst can be magnetically separated and reused for five cycles. The large surface area and high electron transfer property of rGO support are beneficial for good catalytic performance of Ni/rGO nanocomposite. Our study demonstrates a simple approach to fabricate metal-rGO heterogeneous nanostructures with advanced functions.
Graphical abstract ?
  相似文献   

19.
In order to efficiently use the visible light in the photocatalytic reaction, a novel bamboo-like CdS/TiO2 nanotubes composite was prepared by a facile chemical reduction method, in which CdS nanoparticles located in the TiO2 nanotubes. The composition and structure of this nanocomposite were characterized by TEM, HRTEM, XRD, XPS, FTIR and UV-vis spectroscopy. This CdS/TiO2 nanotubes composite exhibited much higher visible-light photocatalytic activity for the degradation of methylene blue than pure TiO2 nanotubes and CdS nanoparticles, and the highest photodegradation efficiency after 6 h irradiation can reach 84.5%. It is inferred that the unique structure of CdS/TiO2 nanotubes composites acts an important role for the improvement of their photocatalytic activity.  相似文献   

20.
Pt/N-codoped TiO2 nanotubes were prepared and characterized by various analytical methods, such as transmission electron microscope (TEM), diffuse reflection spectra (DRS), X-ray powder diffraction (XRD), X-ray photoelectron emission spectroscopy (XPS) and fluorescence spectra (FL). The photocatalytic efficiency was evaluated by the photodegradation of Rhodamine B (RB) in an aqueous solution under visible light irradiation. It has been confirmed that Pt/N-codoped TiO2 nanotubes could be excited by visible light and the recombination rate of electron-hole pairs declined significantly. The higher visible light activity is due to the codoping of nitrogen and platinum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号