首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low molecular weight linear poly(methyl acrylate), star and hyperbranched polymers were synthesized using atom transfer radical polymerization (ATRP) and end‐functionalized using radical addition reactions. By adding allyltri‐n‐butylstannane at the end of the polymerization of poly(methyl acrylate), the polymer was terminated by allyl groups. When at high conversions of the acrylate monomer, allyl alcohol or 1,2‐epoxy‐5‐hexene, monomers which are not polymerizable by ATRP, were added, alcohol and epoxy functionalities respectively were incorporated at the polymer chain end. Functionalization by radical addition reactions was demonstrated to be applicable to multi‐functional polymers such as hyperbranched and star polymers.  相似文献   

2.
This work reports the synthesis at 1 L scale of hyperbranched polyacrylates based upon acrylate/diacrylate monomers such as n-butyl acrylate (nBA)/1,6-hexanediol diacrylate (HDDA) and using atom transfer radical polymerization (ATRP). A FTIR-ATR immersion probe was used to monitor the polymerization reaction. The dynamics of the build-up of polymer structure was studied by off-line analysis of samples at different reaction times by size exclusion chromatography (SEC) with detection of refractive index (RI) and multi-angle laser light scattering (MALLS) signals, leading to molecular weight distribution and z-average radius of gyration. Kinetic measurements and observed parameters of the molecular architecture are compared with theoretical predictions which can be used to design new synthesis strategies to improve the homogeneity of hyperbranched polymers. Another goal of this study was elucidating the impact on polymerization of secondary reactions such as intramolecular cyclizations. For comparison purposes, FRP (conventional radical polymerization) of the same monomers is also considered.  相似文献   

3.
A new form of controlled growth free radical polymerization leading to narrow polydispersity polymers and/or block copolymers is described. The process is based on the polymerization of monomers in the presence of macromonomers of general structure CH2=C(Z)CH2(A)n [(A)n= radical leaving group, Z = activating group] and displays many of the characteristics of living polymerizations. The process is most suited to methacrylic monomers but with the appropriate choice of reaction conditions (high temperatures and/or low conversions) it can also be applied to acrylic and styrenic monomers. The macromonomers are conveniently prepared by catalytic chain transfer to alkyl cobalt(III) complexes or by addition-fragmentation chain transfer. The factors which determine the efficiency of cobalt complexes for molecular weight reduction in free radical emulsion and solution polymerization of methyl methacrylate are also discussed.  相似文献   

4.
Hyperbranched vinyl polymers were prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization of a styrenic asymmetric divinyl monomer.This was achieved by using cumyl dithiobenzoate or S-dodecyl-S′- (α,α′-dimethyl-α″-acetic acid)trithiocarbonate as the chain transfer agent,1,1′-azobis(cyclohexanecarbonitrile) or thermal initiation as a source of radicals.Cross-linking was inhibited by a rapid RAFT-based equilibrium between active propagation chains and dormant species,and thus a h...  相似文献   

5.
分别以双甲基丙烯酸二缩三乙二醇酯和二乙烯苯为支化单体合成支化聚苯乙烯.用GC、1 H-NMR和三检测体积排除色谱( TD-SEC)对聚合反应过程、支化发展和聚合物的支化结构进行了详细的分析表征.两个聚合反应体系内单体转化速率几乎一样,相同单体转化率下,初级链的分子量近似相等.但是由于双甲基丙烯酸二缩三乙二醇酯与苯乙烯单...  相似文献   

6.
Hyperbranched polysiloxane polymers with multivinyl functionality were designed and synthesized through a “one‐step and one‐pot” deactivation enhanced atom transfer polymerization (DE‐ATRP) approach from the copolymerization of polydimethylsiloxane (PDMS) macromonomers and divinylbenzene (DVB). Various feed ratios of siloxane‐based monomer and divinyl monomers were investigated. We showed that even at DVB concentrations as high as 80 mol % in the feed, 65% yield of hyperbranched polymer could be obtained without gelation because the DE‐ATRP suppressed the rapid formation of macronetwork structures. The molecular weight, polydispersity, macromolecular structure of hyperbranched poly(DVB‐co‐PDMS) as well as its viscosity in silicone oil were characterized by GPC‐MALLS, 1H NMR and rheometer. By tracking the relationship between the radius of gyration, elution volume and molecular weight from MALLS analysis, solid evidences of the highly branched and condensed structure of the polymers were obtained. Furthermore, the oil thickening experiments demonstrate that this hyperbranched polymer can act as a well‐controlled viscosity‐modifier for Silicone oils, which potentially will have important application in coating, cosmetic and pharmaceutical products. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Hyperbranched vinyl polymers with high degrees of branching (DBs) up to 0.43 functionalized with numerous pendent allene groups have been successfully prepared via reversible addition fragmentation chain transfer polymerization of a state‐of‐art allene‐derived asymmetrical divinyl monomer, allenemethyl methacrylate (AMMA). The gelation did not occur until high monomer conversions (above 90%), as a result of the optimized reactivity difference between the two vinyl groups in AMMA. The branched structure was confirmed by a combination of a triple‐detection size exclusion chromatography (light scattering, refractive index, and viscosity detectors) and detailed 1H NMR analyses. A two‐step mechanism is proposed for the evolution of branching according to the dependence of molecular weight and DB on monomer conversion. Controlled radical polymerization proceeds until moderate conversions, mainly producing linear polymers. Subsequent initiation and propagation on the polymerizable allene side chains as well as the coupling of macromolecular chains generate numerous branches at moderate‐to‐high monomer conversions, dramatically increasing the molecular weight of the polymer. AMMA was also explored as a new branching agent to construct poly(methyl methacrylate)‐type hyperbranched polymers by its copolymerization with methyl methacrylate. The DB can be effectively tuned by the amount of AMMA, showing a linear increase trend. The pendent allene groups in the side chains of the copolymers were further functionalized by epoxidation and thiol‐ene chemistry in satisfactory yields. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2959–2969  相似文献   

8.
高支化聚合物的合成与表征   总被引:15,自引:0,他引:15  
介绍了近年来在高分子化学领域内十分活跃的高支化聚合物研究的状况。指出了通过ABx型单体的缩聚反应和A=B-C^8型单体的自缩合乙烯都可获得高支化聚合物。目前用以表征高支化聚合物支化度和分子量的方法主要为核心共振法和凝胶渗透色谱法,在实际应用中都存在局限性。  相似文献   

9.
异丁基乙烯基醚与受电子单体的可控自由基共聚合   总被引:3,自引:0,他引:3  
近年来发展起来的“活性” 可控自由基聚合越来越为人们所关注 ,其原因在于采用这种方法不仅可以设计聚合物的分子量 ,得到窄分布聚合物 ,而且聚合条件不象活性离子型聚合那样严格 ,单体适用范围相对较广 .关于烯类单体的活性自由基聚合迄今主要有 :氮氧自由基调控的稳定自由基聚合 (Stablefreeradicalpolymerization ,简称SFRP) [1] 、原子转移自由基聚合 (Atomtransferradicalpolymerization ,简称ATRP) [2 ] 以及以后发展起来的自由基可逆加成 断链链转移聚合…  相似文献   

10.
We investigated the possibility to obtain high‐molecular‐weight (HMW) polymers from the monomers of the diallylamine (DAA) series using quantum chemical and experimental methods. Such monomers are known to polymerize into oligomeric products due to the reaction of the degradative chain transfer to the monomer. We studied potential energy profiles of the chain propagation and competing chain transfer reactions, viz., the free radical double bond addition and α‐hydrogen radical abstraction, respectively, for a number of polymerization processes. Calculations were carried in the framework of the polarized continuum solvent model utilizing the procedure based on the semiempirical MNDO‐PM3 background. It was found that the necessary condition for decreasing competitiveness of the chain transfer to the monomer is the availability of monomer molecules in only protonated form in the polymerizing system. Using these results, we developed the strategy for obtaining HMW polymers based on said monomers. We synthesized a monomer system (the equimolar salt of N,N‐diallyl‐N‐methylamine and trifluoroacetic acid) that fully corresponds to such requirements. Novel HMW polymers were then synthesized by radical polymerization of this salt at soft conditions. We established that chain termination is controlled by the bimolecular mechanism. We showed that the degradative chain transfer transforms into the effective chain transfer. The mechanisms of the observed phenomena are discussed. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

11.
The new approach for synthesis of hyperbranched polymers from commercially available A2 and type monomers was extended to synthesize hyperbranched copolymers. In this work, hyperbranched copoly(sulfone-amine) was prepared by copolymerization of divinyl sulfone (A2) with 4,4′-trimethylenedipiperidine (B2) and N-ethylethylenediamine ( ). During the reaction, secon-dary-amino groups of B2 and monomers react rapidly with vinyl groups of A2 monomers within 35 s, generating a type of intermediate containing one vinyl group and two reactive hydrogen atoms. Now the intermediates can be regarded as a new type monomer, which further polymerizes to form hyperbranched copoly(sulfone-amine). The polymerization mechanism was investigated with FTIR and LC-MSD. The degree of branching (DB) of hyperbranched copolymers increased with decreasing the ratio of 4, 4′-trimethylenedipiperidine to N-ethylethyl- enediamine, so DB can be controlled. When the initial mole ratio of B2 to was equal to or higher than four, r≥4, resulted copolymers were semi-crystalline, while copolymers with r<3 were amorphous.  相似文献   

12.
A metal‐free, cationic, reversible addition–fragmentation chain‐transfer (RAFT) polymerization was proposed and realized. A series of thiocarbonylthio compounds were used in the presence of a small amount of triflic acid for isobutyl vinyl ether to give polymers with controlled molecular weight of up to 1×105 and narrow molecular‐weight distributions (Mw/Mn<1.1). This “living” or controlled cationic polymerization is applicable to various electron‐rich monomers including vinyl ethers, p‐methoxystyrene, and even p‐hydroxystyrene that possesses an unprotected phenol group. A transformation from cationic to radical RAFT polymerization enables the synthesis of block copolymers between cationically and radically polymerizable monomers, such as vinyl ether and vinyl acetate or methyl acrylate.  相似文献   

13.
The present work compares the efficiency of different polymerization methods to design well-defined comb-shaped structures based on macro monomers. Anionic polymerization remains the method of choice and allows the control of polymerization degree of the main chain and the length of the grafts. The presence of an active chain end on the backbone enabled the synthesis of a new type of hyperbranched polymers by reaction with appropriate low molar multifunctional compounds. Free radical polymerization is less efficient for the controlled homopolymerization of macromonomers but less sensitive to the presence of impurities. It requires in most cases long fractionation procedures to access well defined comb-shaped fractions characterized by high molar masses. The controlled free radical polymerization constitutes an interesting alternative. The homopolymerization of macromonomers with late transition metal catalysts was also examined and comb-shaped polymers characterized by a syndiotactic backbone and atactic grafts could be obtained.  相似文献   

14.
Replaceable sieving polymers are the fundamental component for high‐resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well‐defined polymers previously unattainable by conventional free‐radical polymerization. In this study, a high molecular weight poly‐(N,N‐dimethylacrylamide) (PDMA) at 765 000 gmol?1 with a polydispersity index of 1.55 was successfully synthesized with the use of chain transfer agent—2‐propionic acidyl butyl trithiocarbonate in a multistep sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high‐resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of 2‐propionic acidyl butyl trithiocarbonate PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP?‐CAP, of similar molecular weight range.  相似文献   

15.
The sterically hindered, 1,1‐disubstituted monomers di‐n‐butyl itaconate (DBI), dicyclohexyl itaconate (DCHI), and dimethyl itaconate (DMI) were polymerized with reversible addition–fragmentation chain transfer (RAFT) free‐radical polymerization and atom transfer radical polymerization (ATRP). Cumyl dithiobenzoate, cumyl phenyl dithioacetate, 2‐cyanoprop‐2‐yl dithiobenzoate, 4‐cyanopentanoic acid dithiobenzoate, and S‐methoxycarbonylphenylmethyl dithiobenzoate were employed as RAFT agents to mediate a series of polymerizations at 60 °C yielding polymers ranging in their number‐average molecular weight from 4500 to 60,000 g mol?1. The RAFT polymerizations of these hindered monomers displayed hybrid living behavior (between conventional and living free‐radical polymerization) of various degrees depending on the molecular structure of the initial RAFT agent. In addition, DCHI was polymerized via ATRP with a CuCl/methyl benzoate/N,N,N′,N″,N″‐pentamethyldiethylenetriamine/cyclohexanone system at 60 °C. Both the ATRP and RAFT polymerization of the hindered monomers displayed living characteristics; however, broader than expected molecular weight distributions were observed for the RAFT systems (polydispersity index = 1.15–3.35). To assess the cause of this broadness, chain‐transfer‐to‐monomer constants for DMI, DBI, and DCHI were determined (1.4 × 10?3, 1.3 × 10?3, and 1.0 × 10?3, respectively) at 60 °C. Simulations carried out with the PREDICI program package suggested that chain transfer to monomer contributed to the broadening process. In addition, the experimental results indicated that viscosity had a pronounced effect on the broadness of the molecular weight distributions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3692–3710, 2006  相似文献   

16.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Novel hyperbranched polymers were synthesized in a high yield without gelation through the free‐radical alternating copolymerization of an AB/B′ (allyloxy maleic acid/maleic anhydride) system, in which group B and monomer B′ both could only alternately polymerize with group A. The arm number of the produced highly branched polymers was equal to the product of the linear chain length and the probability of pendent B groups being growing centers. The molecular weight of these novel hyperbranched polymers increased with increasing initiator concentration and prolonged polymerization times. The AB/B′ system, used as described, provides a new general methodology for highly branched and functional polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3074–3085, 2000  相似文献   

18.
Hyperbranched polymers consisting of aromatic or aliphatic polyether cores and epoxide chain‐end peripheries were prepared by proton transfer polymerization. AB2 diepoxyphenol monomer 1 proved to be well suited for the preparation of hyperbranched aromatic polymer 2 by this proton transfer polymerization. The use of chloride‐ion catalysis, rather than conventional base catalysis, for the preparation of polymers from diepoxyphenol 1 offered a unique method to control the ultimate molecular weight of the polymer product through variations of the initial concentration of monomer 1 in tetrahydrofuran. An alternative route to hyperbranched polyether epoxies made use of commercially available or easily prepared aliphatic monomers of the types AB2, AB3, and A2 + B3. Although these aliphatic polymerizations can be initiated with a base, chloride‐ion catalysis proved most effective for controlling the polymerization. The hyperbranched epoxies were characterized by NMR spectroscopy, gel permeation chromatography, and multi‐angle laser light scattering. Chemical modification of the polymers after polymerization was carried out via nucleophilic addition on the epoxide groups or derivatization of the hydroxy substituents within the hyperbranched polymer structure. Spectroscopic measurements suggested that some such ring‐opened materials may adopt reverse unimolecular micellar structures in appropriate solution environments. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4850–4869, 2000  相似文献   

19.
The practical synthesis of structurally controlled hyperbranched polymers (HBPs) by organotellurium-mediated radical polymerization (TERP) in water under emulsion conditions is reported. Copolymerization of vinyltelluride named evolmer, which induces controlled branch structure, and acrylates with TERP chain transfer agent (CTA) in water afforded HBPs having dendron structure. The molecular weight, dispersity, branch number, and branch length of the HBPs were controlled by changing the amount of CTA, evolmer, and acrylate monomers. HB-poly(butyl acrylate)s (HBPBAs) with up to the 8th generation having an average of 255 branches were successfully synthesized. As the monomer conversion reached nearly quantitative and the obtained polymer particles were well dispersed in water, the method is highly suitable for synthesizing topological block polymers, block polymers consisting of different topologies. Thus, linear-block-HB, HB-block-linear, and HB-block-HB-PBAs with the controlled structure were successfully synthesized by adding the second monomer(s) to the macro-CTA. The intrinsic viscosity of the resulting homo- and topological block PBAs was systematically controlled by the degree of the branch, the branch length, and the topology. Therefore, the method opens the possibility of obtaining various HBPs with diverse branch structures and tuning the polymer properties by the polymer topology.  相似文献   

20.
可逆加成-断裂链转移(RAFT)聚合作为一种新型活性自由基聚合,由于其具有单体适用面广、操作条件温和、实施聚合的方法多--本体、溶液、乳液、悬浮聚合均可的优点已经在分子设计方面取得了广泛的应用.星形聚合物作为一种特殊结构的聚合物,由于其具有较低的结晶度、较小的流体动力学体积等独特的性质,越来越引起研究者的重视.本文综述了近几年来采用RAFT法合成星形聚合物的研究进展.根据合成星形聚合物所用的RAFT多官能团试剂种类,对RAFT法合成星形聚合物的反应进行了分类.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号