首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The constructions made of bars and plates with holes, openings and bulges of various forms are widely used in modern industry. By loading these structural elements with different efforts, there appears concentration (accumulation) of stress whose values sometimes exceeds the admissible one. The durability of the given element is defined according to the quantity of these stresses. Since the failure of details and construction itself begins from the place where the stress concentration has the greatest value.

Therefore the exact determination of stress distribution in details (bars, plates, beams) is of great scientific and practical interest and is one of the important problems of the solid fracture.

Compound details (when the nucleus of different material is soldered to the hole) are often used to decrease the stress concentration.

In the present paper, we study a stress–strain state of polygonal plate weakened by a central elliptic hole with two linear cracks info which a rigid nucleus (elliptic cylinder with two linear bulges) of different material was put in (soldered) without preload.

The problem is solved by a complex variable functions theory stated in papers [Theory of Elasticity, Higher School, Moscow, 1976, p. 276; Plane Problem of Elasticity Theory of Plates with Holes, Cuts and Inclusions, Publishing House Highest School, Kiev, 1975, p. 228; Bidimensional Problem of Elasticity Theory, Stroyizdat, Moscow, 1991, p. 352; Science, Moscow (1996) 708; MSB AH USSR OTH 9 (1948) 1371].

Kolosov–Mushkelishvili complex potential (z) and ψ(z) satisfying the definite boundary conditions are sought in the form of sums of functional series.

After making several strict mathematical transformations, the problem is reduced to the solution of a system of linear algebraic equations with respect to the coefficients of expansions of functions (z) and ψ(z).

Determining the values of (z) and ψ(z), we can find the stress components σr, σθ and τrθ at any point of cross-section of the plate and nucleus on the basis of the known formulae. The obtained solution is illustrated by numerical example.

Changing the parameters A1, m1, e, A2, and m2 we can get the various contour plates.

For example, if we assume m1=0, A1=r, then the internal contour of L1 becomes the circle of radius r with two rectilinear cracks (for the nucleus––a rectilinear bulges).

Further, if we assume a small semi-axis of the ellipse b1 to be equal to zero (b1=0), then a linear crack becomes the internal contour of L1 (and the nucleus becomes the linear rigid inclusion made of other material). For m2=0; A2=R, the external contour L2 turns into the circle of radius R.

The obtained method of solution may be applied and in other similar problems of elasticity theory; tension of compound polygonal plate, torsion and bending of compound prismatic beams, etc.  相似文献   


2.
Instability of two-dimensional periodic flows with rhombic cell structure represented by the stream function Ψ=cos kx+cosy is investigated. Stability characteristics are obtained for the Reynolds number R=1, 2, 3 and 4 and the ratio of the diagonals of the cell . Variation of the critical Reynolds number Rc with k is obtained, and the square cell flow (k=1) is found to be most stable (Rc=√2). It is found that Rc → 1 as k → 0, which leads to a finite gap between this limiting Rc and Rc=√2 for K=0 (Ψ=cos y).  相似文献   

3.
Results of experimental studies are presented on the evolution of the circular Couette flow with the outer cylinder at rest. In particular, several modes of modulated wavy vortical flows have been identified in a consistent way both from flow visualization and from signals of scattered laser beam. The latter technique has been extended to measure the spatial correlation between fluctuations as a function of the azimuthal separation of the points. It has been found that the two-point angular correlation reflects the pattern of modulation, and falls off as (RdR)σ when the ‘disorder Reynolds number’ Rd is approached. The value of the exponent σ has been estimated to be about 1/3 in the experiment.  相似文献   

4.
Flow of an incompressible viscous fluid contained in a cylindrical vessel (radius R, height H) is considered. Each of the cylinder endwalls is split into two parts which rotate steadily about the central axis with different rotation rates: the inner disk (r < r1) rotating at Ω1, and the outer annulus (r1 < r < R) rotating at Ω2. Numerical solutions to the axisymmetric Navier-Stokes equations are secured for small system Ekman numbers E ( v/(ΩH2)). In the linear regime, when the Rossby number Ro , the numerical results are shown to be compatible with the theoretical prediction as well as the available experimental measurements. Emphasis is placed on the results in the nonlinear regime in which Ro is finite. Details of the structures of azimuthai and meridional flows are presented by the numerical results. For a fixed Ekman number, the gross features of the flow remain qualitatively unchanged as Ro increases. The meridional flows are characterized by two circulation cells. The shear layer is a region of intense axial flow toward the endwall and of vanishing radial velocity. The thicknesses of the shear layer near r = r1 and the Ekman layer on the endwall scale with E and E , respectively. The numerical results are consistent with these scalings.  相似文献   

5.
The effect of tube diameter (d) on Preston tube calibration curves for the measurement of wall shear stress (τw) in a zero pressure gradient turbulent boundary layer has been investigated. Five different outside diameter tubes of 1.46, 1.82, 3.23, 4.76 and 5.54 mm, corresponding to (d/δ) of 0.022, 0.027, 0.048, 0.071 and 0.082 were used to measure τw at Reynolds numbers based on momentum thickness (Rθ) of 2800–4100. The calibration curves of Patel (V.C. Patel, J. Fluid Mech. 23 (part I) (1965) 185–208) and Bechert (D.W. Bechert, AIAA J. 34 (1) (1995) 205–206) are both dependent on the tube diameter. The maximum difference in the τw measurements from the different tubes using Patel's calibration is about 8%, while Bechert's calibration gives a maximum difference of approximately 18%.  相似文献   

6.
A numerical study is made of flow and heat transfer characteristics of forced convection in a channel that is partially filled with a porous medium. The flow geometry models convective cooling process in a printed circuit board system with a porous insert.The channel walls are assumed to be adiabatic. Comprehensive numerical solutions are acquired to the governing Navier-Stokes equations, using the Brinkman-Forchheimer-extended Darcy model for the regions of porous media. Details of flow and thermal fields are examined over ranges of the principal parameters; i.e., the Reynolds number Re, the Darcy number Da (≡K/H2), the thickness of the porous substrate S, and the ratio of thermal conductivities Rk (≡keff/k). Two types of the location of the porous block are considered. The maximum temperature at the heat source and the associated pressure drop are presented for varying Re, Da, S, and Rk. The results illustrate that as S increases or Da decreases, the fluid flow rate increases. Also, as Rk increases for fixed Da, heat transfer rates are augmented. Explicit influences of Re on the flow and heat transport characteristics are also scrutinized. Assessment is made of the utility of using a porous insert by cross comparing the gain in heat transport against the increase in pressure drop.  相似文献   

7.
Within the framework of the complete Navier-Stokes equations the turbulent flow in a pipe of elliptical cross-section with semiaxis ratio b/a = 0.5 is directly calculated for the Reynolds number Re = 6000 determined from the mean-flow velocity and the hydraulic diameter. The distribution of the average and pulsatory flow characteristics over the pipe cross-section are obtained. In particular, the secondary flow in the cross-section plane, typical of turbulent flows in noncircular pipes, is calculated. The equation for the longitudinal vorticity which determines the shape and intensity of the secondary flow is analyzed. In the balance equation for the pulsation kinetic energy the behavior of all the terms that characterize energy production, dissipation and redistribution over the pipe cross-section is described.  相似文献   

8.
Fluid flow in a rotating cylindrical container of radius Rw and height H with a co-axially rotating disk of radius Rd at the fluid surface is numerically investigated. The container and the disk rotate with angular velocities Ωw and Ωd, respectively. We solve the axisymmetric Navier-Stokes equations using a finite-volume method. The effects of the relative directions and magnitudes of the disk and container rotations are studied. The calculations are carried out with various ratios of Ωw and Ωd for H/Rw = 2 and Rd/Rw = 0.7. Streamlines and velocity vectors in the meridional plane and azimuthal velocities are obtained. The flow fields in the meridional plane are discussed with relation to azimuthal velocities in the interior of the container. The numerical results are also compared with experimental data.  相似文献   

9.
Single-wall carbon nanotubes (SWCNT) have been frequently modeled as thin shells, but the shell thickness and Young's modulus reported in literatures display large scattering. The order of error to approximate SWCNTs as thin shells is studied in this paper via an atomistic-based finite-deformation shell theory, which avoids the shell thickness and Young's modulus, but links the tension and bending rigidities directly to the interatomic potential. The ratio of atomic spacing (Δ≈0.14 nm) to the radius of SWCNT, Δ/R, which ranges from zero (for graphene) to 40% [for a small (5,5) armchair SWCNT (R=0.35 nm)], is used to estimate the order of error. For the order of error O[(Δ/R)3], SWCNTs cannot be represented by a conventional thin shell because their constitutive relation involves the coupling between tension and curvature and between bending and strain. For the order of error O[(Δ/R)2], the tension and bending (shear and torsion) rigidities of SWCNTs can be represented by an elastic orthotropic thin shell, but the thickness and elastic modulus cannot. Only for the order of error O(Δ/R), a universal constant shell thickness can be defined and SWCNTs can be modeled as an elastic isotropic thin shell.  相似文献   

10.
The effect of the aspect ratio on natural convection in water subjected to density inversion has been investigated in this study. Numerical simulations of the two-dimensional, steady state, incompressible flow in a rectangular enclosure with a variety of aspect ratios, ranging from 0.125 to 100, have been accomplished using a finite element model. Computations cover Rayleigh numbers from 103 to 106. Results reveal that the aspect ratio, A, the Rayleigh number, Ra, and the density distribution parameter, R, are the key parameters to determine the heat transfer and fluid flow characteristics for density inversion fluids in an enclosure. A new correlation for predicting the maximum mean Nusselt number is proposed in the form of , with the constants a and b depending on density distribution number R. It is demonstrated that the aspect ratio has a strong impact on flow patterns and temperature distributions in rectangular enclosures. The stream function ratio Ψinv/|Ψreg| is introduced to describe quantitatively the interaction between inversional and regular convection. For R=0.33, the density inversion enhancement is observed in the regime near A=3.  相似文献   

11.
Flow regime transitions due to cavitation in the flow through an orifice   总被引:4,自引:0,他引:4  
This paper presents both experimental and theoretical aspects of the flow regime transitions caused by cavitation when water is passing through an orifice. Cavitation inception marks the transition from single-phase to two-phase bubbly flow; choked cavitation marks the transition from two-phase bubbly flow to two-phase annular jet flow.

It has been found that the inception of cavitation does not necessarily require that the minimum static pressure at the vena contracta downstream of the orifice, be equal to the vapour pressure liquid. In fact, it is well above the vapour pressure at the point of inception. The cavitation number [σ = (P3Pv)/(0.5 pV2); here P3 is the downstream pressure, Pv is the vapour pressure of the liquid, ρ is the density of the liquid and V is the average liquid velocity at the orifice] at inception is independent of the liquid velocity but strongly dependent on the size of the geometry. Choked cavitation occurs when this minimum pressure approaches the vapour pressure. The cavitation number at the choked condition is a function of the ratio of the orifice diameter (d) to the pipe diameter (D) only. When super cavitation occurs, the dimensionless jet length [L/(D - d); where L is the dimensional length of the jet] can be correlated by using the cavitation number. The vaporization rate of the surface of the liquid jet in super cavitation has been evaluated based on the experiments.

Experiments have also been conducted in which air was deliberately introduced at the vena contracta to simulate the flow regime transition at choked cavitation. Correlations have been obtained to calculate the critical air flow rate required to cause the flow regime transition. By drawing an analogy with choked cavitation, where the air flow rate required to cause the transition is zero, the vapour and released gas flow rate can be predicted.  相似文献   


12.
Experiments were carried out to measure the base pressure distribution of a flow field induced by a potential vortex with its axis normal to a stationary disk. The center base pressure coefficient of the vortex, C0(0), was found to be proportional to Reynolds number from Re = 2.0 × 103 to Re > 2.5 × 104, where Re is based on the disk radius and azimuthal velocity at the disk edge. This behavior of C0(0) is at variance with the experimental results of Phillips (Phys. Fluids, 27, 2215, 1984) and Khoo (M. Eng. Thesis, Natl. Univ. Singapore, 1984), which showed vastly different trends depending on Re. Plausible reasons are suggested for the apparent discrepancies observed. Finally, the extent of the effusing core at the center, r1 (taken to be the radial position where departure from the outer potential flow took place), was found to be proportional to Re−1/2 for all Re values considered.  相似文献   

13.
Two-phase flow measurements with sharp-edged orifices   总被引:10,自引:0,他引:10  
This paper contains the results of a set of two-phase flow measurements of 4 different ratios of vapor to liquid density (up to 0.328) across a sharp-edged circular orifice. Test fluid was R-113. Tests were carried out upon 3 orifices whose diameter ratios were 0.312, 0.439 and 0.625. The test quality ranged from 0–100%, while the mass velocity from 917–1477 kg/m2.s. On the basis of a modified separated flow model, a relationship is developed for the flow rate and quality and is compared with experimental data and 5 proposed correlations. Comparison shows this method can be used to calculate the flow rate or the quality of vapor liquid (or steam water) mixture in the range 0.00455 to 0.328 of the density ratio, and in pipe size ranging from 8 to 75 mm (β = 0.25–0.75).

The RMS error of this method is about 12% when the quality, x, ranges from 2% to 100%.  相似文献   


14.
Experimental measurements of heat transfer are made from the inner peripheral surface of a rotating test rig designed to be similar to a gas turbine high pressure compressor internal air system. The test rig comprises a number of annular discs sealed at their periphery by a shroud. An axial throughflow of cooling air enters the test rig and flows through the annular section between the disc bores and a central shaft. Tests were carried out for the following range of rotational speeds and axial throughflow rates: 540 < NR < 10,800 rev/min and (corresponding to the range of rotational and axial Reynolds numbers 4 × 105 < Re < 7.7 × 106 and 3.3 × 104 < Rez < 2.2 × 105).

The shroud Nusselt numbers are found to depend on the shroud Grashof number. They are relatively insensitive to changes in axial Reynolds number and two geometrically similar cavities give similar values of Nusselt number. The heat transfer from the shroud is governed by the mechanism of free convection. It is recommended that a modified form of a correlation for Rayleigh–Bénard convection in a gravitational force field be used, with appropriate modification, to predict shroud heat transfer.  相似文献   


15.
Dynamically relevant alignments are used in order to show that regions with weak vorticity are not structureless, non-Gaussian and dynamically not passive. for example, the structure of vorticity in quasi-homogeneous/isotropic turbulent flows is associated with strong alignment between vorticity ω and the eigenvectors of the rate of strain tensor λi (especially — but not only — between ω and λ2) rather than with intense vorticity only. Consequently, much larger regions of turbulent flow than just those with intense vorticity are spatially structured. The whole flow field — even with the weakest measurable enstrophy — is strongly non-Gaussian, which among other things is manifested in strong alignment between vorticity and the vortex stretching vector Wi ≡ ωjSij. It is shown that the quasi-two-dimensional regions corresponding to large cos(ω, λ2) are qualitatively different from purely two-dimensional ones, e.g. in that they possess essentially nonvanishing enstrophy generation, which is larger than its mean for the whole field.  相似文献   

16.
G. A. Kriegsmann   《Wave Motion》2002,36(4):457-472
A variational technique is employed to compute approximate propagation constants for electromagnetic waves in a dielectric structure which is periodic in the XY plane and translationally invariant in the Z-direction. The fundamental cell, in the periodic structure, is composed of a pore and the surrounding host media. The pore is a circle of radius R0 filled with a dielectric ε1 and the host dielectric characterized by ε2. The size of the cell is characterized by the length A which is R0.

Two limiting cases are considered. In the first, the pore size is assumed to be much smaller than the wavelength; this limit is motivated by microwave heating of porous material. The approximate propagation constants are explicitly computed for this case and are shown to depend upon the two dielectric constants, the relative areas of the two regions in the cell, and on a modal number. They are not given by a simple mixture formula.

In the second limit, the pore size is taken to be of the same order as the wavelength; this limit is motivated by the propagation of light in a holey fiber. In this case our argument directly yields the dispersion relationship recently derived by Ferrando et al. [Opt. Lett. 24 (1999) 276], using intuitive and physical reasoning. Thus, our method puts theirs into a mathematical framework from which other approximations might be deduced.  相似文献   


17.
This article considers fully laminar flow of an incompressible viscous fluid in a uniformly porous pipe with suction and injection. An exact solution of the Navier–Stokes equations is given. The velocity filed can be expressed in a series form in terms of the modified Bessel function of the first kind of order n. The volume flux across a plane normal to the flow, the vorticity and the stress on the boundary are presented. The flow properties depend on the cross-Reynolds number, Ua/ν, where U is the suction velocity, a is the radius of the pipe and ν is the kinematic viscosity of the fluid. It is found that for large values of the cross-Reynolds number, the flow near the region of the suction shows a boundary layer character. In this region the velocity and the vorticity vary sharply. Outside the boundary layer, the velocity and the vorticity do not show an appreciable change.  相似文献   

18.
An experimental investigation was carried out on the heat transfer due to a submerged slot jet of water impinging on a circular cylinder in crossflow. The cylinder diameter and the slot width are of the same order of magnitude, specifically Ds = 2.0 and 3.0 mm and Dc = 2.5 and 3.0 mm. The experimental apparatus allowed variation of the slot width, the cylinder diameter, and the distance from nozxle exit to heater. Conditions of impingement from the bottom (ascending flow) were taken into consideration as well as impingement from above (descending flow). The Nusselt number was determined as a function of Reynolds and Prandtl numbers in the range 1.5 × 103 < Re < 2.0 × 104, 2.7 < Pr < 7.0, and 1.5 ≤ z/Ds ≤ 10. The experimental data were correlated with a simple equation that fits 90% of the data with a precision of 20%.  相似文献   

19.
An experimental study was made of the thermal and hydraulic characteristics of a three-phase fluidized bed cooling tower. The experiments were carried out in a packed tower of 200 mm diameter and 2.5 m height. The packing used was spongy rubber balls 12.7 mm in diameter and with a density of 375 kg/m3. The tower characteristic was evaluated. The air-side pressure drop and the minimum fluidization velocity were measured as a function of water/air mass flux ratio (0.4–2), static bed height (300–500 mm), and hot water inlet temperature (301–334 K).

The experimental results indicate that the tower characteristics KaV/L increases with increases in the bed static height and hot water inlet temperature and with decreases in the water/air mass flux ratio. It is also shown that the air-side pressure drop increases very slowly with increases in air velocity. The minimum, fluidization velocity was found to be independent of the static bed height.

The data obtained were used to develop a correlation between the tower characteristics, hot water inlet temperature, static bed height, and the water/air mass flux ratio. The mass transfer coefficient of the three-phase fluidized bed cooling tower is much higher than that of packed-bed cooling towers with higher packing height.  相似文献   


20.
The lag-entrainment predictive scheme developed by Green et al. has been modified to include the pressure-gradient parameter Π1. In the original model suggested by Green et al. the mass-flow shape factor H1 is related to the common shape factor H, H1 = f(H). In the present model H1 is related to H, Reynolds number based on the local momentum thickness θ, and Π1; thus H1 = f(H, Reθ, Π1). The modified formula for H1, is introduced into the original lag-entrainment integral model. Calculations are made to examine the present model for the predictions of the development of boundary layers approaching separation studied experimentally by the authors. Slightly improved predictions are obtained using the model developed by El Telbany et al. However, the present model proved to give an improved representation of the development of wall shear stress in cases the two-equation turbulence model proved to be unsuccessful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号