首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An edge‐colored graph Gis rainbow edge‐connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make Grainbow edge‐connected. We prove that if Ghas nvertices and minimum degree δ then rc(G)<20n/δ. This solves open problems from Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster (Electron J Combin 15 (2008), #R57) and S. Chakrborty, E. Fischer, A. Matsliah, and R. Yuster (Hardness and algorithms for rainbow connectivity, Freiburg (2009), pp. 243–254). A vertex‐colored graph Gis rainbow vertex‐connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex‐connection of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make Grainbow vertex‐connected. One cannot upper‐bound one of these parameters in terms of the other. Nevertheless, we prove that if Ghas nvertices and minimum degree δ then rvc(G)<11n/δ. We note that the proof in this case is different from the proof for the edge‐colored case, and we cannot deduce one from the other. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 185–191, 2010  相似文献   

2.
A path in an edge colored graph G is called a rainbow path if all its edges have pairwise different colors. Then G is rainbow connected if there exists a rainbow path between every pair of vertices of G and the least number of colors needed to obtain a rainbow connected graph is the rainbow connection number. If we demand that there must exist a shortest rainbow path between every pair of vertices, we speak about strongly rainbow connected graph and the strong rainbow connection number. In this paper we study the (strong) rainbow connection number on the direct, strong, and lexicographic product and present several upper bounds for these products that are attained by many graphs. Several exact results are also obtained.  相似文献   

3.
A path in an edge-colored graph G, where adjacent edges may be colored the same, is called a rainbow path if no two edges of it are colored the same. A nontrivial connected graph G is rainbow connected if for any two vertices of G there is a rainbow path connecting them. The rainbow connection number of G, denoted rc(G), is defined as the smallest number of colors such that G is rainbow connected. In this paper, we mainly study the rainbow connection number rc(L(G)) of the line graph L(G) of a graph G which contains triangles. We get two sharp upper bounds for rc(L(G)), in terms of the number of edge-disjoint triangles of G. We also give results on the iterated line graphs.  相似文献   

4.
A vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that any pair of vertices has the distinct sets of colors. The minimum number of colors required for a vertex distinguishing edge coloring of a graph G is denoted by ???? s (G). In this paper, we obtained upper bounds on the vertex distinguishing chromatic index of 3-regular Halin graphs and Halin graphs with ??(G) ?? 4, respectively.  相似文献   

5.
A vertex-colored graph G is rainbow vertex connected if any two distinct vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex connected. In this paper, we prove that for a connected graph G, if \({{\rm diam}(\overline{G}) \geq 3}\), then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. Next, we obtain that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 2}\), if G is connected, then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. A total-colored path is total rainbow if its edges and internal vertices have distinct colors. A total-colored graph G is total rainbow connected if any two distinct vertices are connected by some total rainbow path. The total rainbow connection number of G, denoted by trc(G), is the smallest number of colors required to color the edges and vertices of G in order to make G total rainbow connected. In this paper, we prove that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 3}\), if G is connected, then trc\({(G) \leq 5}\), and this bound is tight. Next, a Nordhaus–Gaddum-type result for the total rainbow connection number is provided. We show that if G and \({\overline{G}}\) are both connected, then \({6 \leq {\rm trc} (G) + {\rm trc}(\overline{G}) \leq 4n - 6.}\) Examples are given to show that the lower bound is tight for \({n \geq 7}\) and n = 5. Tight lower bounds are also given for n = 4, 6.  相似文献   

6.
A graph H is strongly immersed in G if H is obtained from G by a sequence of vertex splittings (i.e., lifting some pairs of incident edges and removing the vertex) and edge removals. Equivalently, vertices of H are mapped to distinct vertices of G (branch vertices) and edges of H are mapped to pairwise edge‐disjoint paths in G, each of them joining the branch vertices corresponding to the ends of the edge and not containing any other branch vertices. We describe the structure of graphs avoiding a fixed graph as a strong immersion. The theorem roughly states that a graph which excludes a fixed graph as a strong immersion has a tree‐like decomposition into pieces glued together on small edge cuts such that each piece of the decomposition has a path‐like linear decomposition isolating the high degree vertices.  相似文献   

7.
A proper edge coloring of a simple graph G is called vertex‐distinguishing if no two distinct vertices are incident to the same set of colors. We prove that the minimum number of colors required for a vertex‐distinguishing coloring of a random graph of order n is almost always equal to the maximum degree Δ(G) of the graph. © 2002 John Wiley & Sons, Inc. Random Struct. Alg., 20, 89–97, 2002  相似文献   

8.
The restricted‐edge‐connectivity of a graph G, denoted by λ′(G), is defined as the minimum cardinality over all edge‐cuts S of G, where GS contains no isolated vertices. The graph G is called λ′‐optimal, if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G. A graph is super‐edge‐connected, if every minimum edge‐cut consists of edges adjacent to a vertex of minimum degree. In this paper, we present sufficient conditions for arbitrary, triangle‐free, and bipartite graphs to be λ′‐optimal, as well as conditions depending on the clique number. These conditions imply super‐edge‐connectivity, if δ (G) ≥ 3, and the equality of edge‐connectivity and minimum degree. Different examples will show that these conditions are best possible and independent of other results in this area. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 228–246, 2005  相似文献   

9.
A path in an edge-colored graph is called rainbow if any two edges of the path have distinct colors. An edge-colored graph is called rainbow connected if there exists a rainbow path between every two vertices of the graph. For a connected graph G, the minimum number of colors that are needed to make G rainbow connected is called the rainbow connection number of G, denoted by rc(G). In this paper, we investigate the relation between the rainbow connection number and the independence number of a graph. We show that if G is a connected graph without pendant vertices, then \(\mathrm{rc}(G)\le 2\alpha (G)-1\). An example is given showing that the upper bound \(2\alpha (G)-1\) is equal to the diameter of G, and so the upper bound is sharp since the diameter of G is a lower bound of \(\mathrm{rc}(G)\).  相似文献   

10.
Rainbow Connection in 3-Connected Graphs   总被引:2,自引:0,他引:2  
An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this paper, we proved that rc(G) ≤ 3(n + 1)/5 for all 3-connected graphs.  相似文献   

11.
A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two adjacent vertices are assigned the same color) such that no path on four vertices is 2‐colored. The star chromatic number of G is the smallest integer k for which G admits a star coloring with k colors. In this paper, we prove that every subcubic graph is 6‐star‐colorable. Moreover, the upper bound 6 is best possible, based on the example constructed by Fertin, Raspaud, and Reed (J Graph Theory 47(3) (2004), 140–153).  相似文献   

12.
A perfect path double cover (PPDC) of a graph G on n vertices is a family ?? of n paths of G such that each edge of G belongs to exactly two members of ?? and each vertex of G occurs exactly twice as an end of a path of ??. We propose and study the conjecture that every simple graph admits a PPDC. Among other things, we prove that every simple 3-regular graph admits a PPDC consisting of paths of length three.  相似文献   

13.
A face of a vertex coloured plane graph is called loose if the number of colours used on its vertices is at least three. The looseness of a plane graph G is the minimum k such that any surjective k-colouring involves a loose face. In this paper we prove that the looseness of a connected plane graph G equals the maximum number of vertex disjoint cycles in the dual graph G* increased by 2. We also show upper bounds on the looseness of graphs based on the number of vertices, the edge connectivity, and the girth of the dual graphs. These bounds improve the result of Negami for the looseness of plane triangulations. We also present infinite classes of graphs where the equalities are attained.  相似文献   

14.
Let Qn be a hypercube of dimension n, that is, a graph whose vertices are binary n-tuples and two vertices are adjacent iff the corresponding n-tuples differ in exactly one position. An edge coloring of a graph H is called rainbow if no two edges of H have the same color. Let f(G,H) be the largest number of colors such that there exists an edge coloring of G with f(G,H) colors such that no subgraph isomorphic to H is rainbow. In this paper we start the investigation of this anti-Ramsey problem by providing bounds on f(Qn,Qk) which are asymptotically tight for k = 2 and by giving some exact results.  相似文献   

15.
 A well-known and essential result due to Roy ([4], 1967) and independently to Gallai ([3], 1968) is that if D is a digraph with chromatic number χ(D), then D contains a directed path of at least χ(D) vertices. We generalize this result by showing that if ψ(D) is the minimum value of the number of the vertices in a longest directed path starting from a vertex that is connected to every vertex of D, then χ(D) ≤ψ(D). For graphs, we give a positive answer to the following question of Fajtlowicz: if G is a graph with chromatic number χ(G), then for any proper coloring of G of χ(G) colors and for any vertex vV(G), there is a path P starting at v which represents all χ(G) colors. Received: May 20, 1999 Final version received: December 24, 1999  相似文献   

16.
A face of an edge‐colored plane graph is called rainbow if the number of colors used on its edges is equal to its size. The maximum number of colors used in an edge coloring of a connected plane graph Gwith no rainbow face is called the edge‐rainbowness of G. In this paper we prove that the edge‐rainbowness of Gequals the maximum number of edges of a connected bridge face factor H of G, where a bridge face factor H of a plane graph Gis a spanning subgraph H of Gin which every face is incident with a bridge and the interior of any one face fF(G) is a subset of the interior of some face f′∈F(H). We also show upper and lower bounds on the edge‐rainbowness of graphs based on edge connectivity, girth of the dual graphs, and other basic graph invariants. Moreover, we present infinite classes of graphs where these equalities are attained. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 84–99, 2009  相似文献   

17.
For a graph G, a detachment operation at a vertex transforms the graph into a new graph by splitting the vertex into several vertices in such a way that the original graph can be obtained by contracting all the split vertices into a single vertex. A graph obtained from a given graph G by applying detachment operations at several vertices is called a detachment of graph G. While detachment operations may decrease the connectivity of graphs, there are several works on conditions for preserving the connectivity. In this paper, we present necessary and sufficient conditions for a given graph/digraph to have an Eulerian detachment that satisfies a given local edge-connectivity requirement. We also discuss conditions for the detachment to be loopless.  相似文献   

18.
A vertex coloring of a graph G is an assignment of colors to the vertices of G so that every two adjacent vertices of G have different colors. A coloring related property of a graphs is also an assignment of colors or labels to the vertices of a graph, in which the process of labeling is done according to an extra condition. A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those structures of a graph that satisfy some domination property together with other conditions on the vertices of G. In this article we study several mathematical properties related to coloring, domination and location of corona graphs. We investigate the distance-k colorings of corona graphs. Particularly, we obtain tight bounds for the distance-2 chromatic number and distance-3 chromatic number of corona graphs, through some relationships between the distance-k chromatic number of corona graphs and the distance-k chromatic number of its factors. Moreover, we give the exact value of the distance-k chromatic number of the corona of a path and an arbitrary graph. On the other hand, we obtain bounds for the Roman dominating number and the locating–domination number of corona graphs. We give closed formulaes for the k-domination number, the distance-k domination number, the independence domination number, the domatic number and the idomatic number of corona graphs.  相似文献   

19.
Dedicated to the memory of Paul Erdős A graph G is k-linked if G has at least 2k vertices, and, for any vertices , , ..., , , , ..., , G contains k pairwise disjoint paths such that joins for i = 1, 2, ..., k. We say that G is k-parity-linked if G is k-linked and, in addition, the paths can be chosen such that the parities of their lengths are prescribed. We prove the existence of a function g(k) such that every g(k)-connected graph is k-parity-linked if the deletion of any set of less than 4k-3 vertices leaves a nonbipartite graph. As a consequence, we obtain a result of Erdős–Pósa type for odd cycles in graphs of large connectivity. Also, every -connected graph contains a totally odd -subdivision, that is, a subdivision of in which each edge of corresponds to an odd path, if and only if the deletion of any vertex leaves a nonbipartite graph. Received May 13, 1999/Revised June 19, 2000  相似文献   

20.
An edge-coloring of a connected graph is monochromatically-connecting if there is a monochromatic path joining any two vertices. How “colorful” can a monochromatically-connecting coloring be? Let mc(G) denote the maximum number of colors used in a monochromatically-connecting coloring of a graph G. We prove some nontrivial upper and lower bounds for mc(G) and relate it to other graph parameters such as the chromatic number, the connectivity, the maximum degree, and the diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号