首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph G is called H‐saturated if it does not contain any copy of H, but for any edge e in the complement of G, the graph contains some H. The minimum size of an n‐vertex H‐saturated graph is denoted by . We prove holds for all , where is a cycle with length k. A graph G is H‐semisaturated if contains more copies of H than G does for . Let be the minimum size of an n‐vertex H‐semisaturated graph. We have We conjecture that our constructions are optimal for . © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 203–215, 2013  相似文献   

2.
For graphs F and H, we say F is Ramsey for H if every 2‐coloring of the edges of F contains a monochromatic copy of H. The graph F is Ramsey Hminimal if F is Ramsey for H and there is no proper subgraph of F so that is Ramsey for H. Burr et al. defined to be the minimum degree of F over all Ramsey H‐minimal graphs F. Define to be a graph on vertices consisting of a complete graph on t vertices and one additional vertex of degree d. We show that for all values ; it was previously known that , so it is surprising that is much smaller. We also make some further progress on some sparser graphs. Fox and Lin observed that for all graphs H, where is the minimum degree of H; Szabó et al. investigated which graphs have this property and conjectured that all bipartite graphs H without isolated vertices satisfy . Fox et al. further conjectured that all connected triangle‐free graphs with at least two vertices satisfy this property. We show that d‐regular 3‐connected triangle‐free graphs H, with one extra technical constraint, satisfy ; the extra constraint is that H has a vertex v so that if one removes v and its neighborhood from H, the remainder is connected.  相似文献   

3.
The circular chromatic index of a graph G, written , is the minimum r permitting a function such that whenever e and are adjacent. It is known that for any , there is a 3‐regular simple graph G with . This article proves the following results: Assume is an odd integer. For any , there is an n‐regular simple graph G with . For any , there is an n‐regular multigraph G with .  相似文献   

4.
Let G be a bridgeless cubic graph. Consider a list of k 1‐factors of G. Let be the set of edges contained in precisely i members of the k 1‐factors. Let be the smallest over all lists of k 1‐factors of G. We study lists by three 1‐factors, and call with a ‐core of G. If G is not 3‐edge‐colorable, then . In Steffen (J Graph Theory 78 (2015), 195–206) it is shown that if , then is an upper bound for the girth of G. We show that bounds the oddness of G as well. We prove that . If , then every ‐core has a very specific structure. We call these cores Petersen cores. We show that for any given oddness there is a cyclically 4‐edge‐connected cubic graph G with . On the other hand, the difference between and can be arbitrarily big. This is true even if we additionally fix the oddness. Furthermore, for every integer , there exists a bridgeless cubic graph G such that .  相似文献   

5.
Let G be an n‐vertex simple graph, and let and denote the maximum degree and chromatic index of G, respectively. Vizing proved that or . Define G to be Δ‐critical if and for every proper subgraph H of G. In 1965, Vizing conjectured that if G is an n‐vertex Δ‐critical graph, then G has a 2‐factor. Luo and Zhao showed if G is an n‐vertex Δ‐critical graph with , then G has a hamiltonian cycle, and so G has a 2‐factor. In this article, we show that if G is an n‐vertex Δ‐critical graph with , then G has a 2‐factor.  相似文献   

6.
Let be a function on the vertex set of the graph . The graph G is f‐choosable if for every collection of lists with list sizes specified by f there is a proper coloring using colors from the lists. The sum choice number, , is the minimum of , over all functions f such that G is f‐choosable. It is known (Alon, Surveys in Combinatorics, 1993 (Keele), London Mathematical Society Lecture Note Series, Vol. 187, Cambridge University Press, Cambridge, 1993, pp. 1–33, Random Struct Algor 16 (2000), 364–368) that if G has average degree d, then the usual choice number is at least , so they grow simultaneously. In this article, we show that can be bounded while the minimum degree . Our main tool is to give tight estimates for the sum choice number of the unbalanced complete bipartite graph .  相似文献   

7.
A graph is a k‐critical graph if G is not ‐colorable but every proper subgraph of G is ‐colorable. In this article, we construct a family of 4‐critical planar graphs with n vertices and edges. As a consequence, this improves the bound for the maximum edge density attained by Abbott and Zhou. We conjecture that this is the largest edge density for a 4‐critical planar graph.  相似文献   

8.
There are numerous results bounding the circumference of certain 3‐connected graphs. There is no good bound on the size of the largest bond (cocircuit) of a 3‐connected graph, however. Oporowski, Oxley, and Thomas (J Combin Theory Ser B 57 (1993), 2, 239–257) proved the following result in 1993. For every positive integer k, there is an integer such that every 3‐connected graph with at least n vertices contains a ‐ or ‐minor. This result implies that the size of the largest bond in a 3‐connected graph grows with the order of the graph. Oporowski et al. obtained a huge function iteratively. In this article, we first improve the above authors' result and provide a significantly smaller and simpler function . We then use the result to obtain a lower bound for the largest bond of a 3‐connected graph by showing that any 3‐connected graph on n vertices has a bond of size at least . In addition, we show the following: Let G be a 3‐connected planar or cubic graph on n vertices. Then for any , G has a ‐minor with , and thus a bond of size at least .  相似文献   

9.
A proper k‐coloring of a graph is a function such that , for every . The chromatic number is the minimum k such that there exists a proper k‐coloring of G. Given a spanning subgraph H of G, a q‐backbone k‐coloring of is a proper k‐coloring c of such that , for every edge . The q‐backbone chromatic number is the smallest k for which there exists a q‐backbone k‐coloring of . In this work, we show that every connected graph G has a spanning tree T such that , and that this value is the best possible. As a direct consequence, we get that every connected graph G has a spanning tree T for which , if , or , otherwise. Thus, by applying the Four Color Theorem, we have that every connected nonbipartite planar graph G has a spanning tree T such that . This settles a question by Wang, Bu, Montassier, and Raspaud (J Combin Optim 23(1) (2012), 79–93), and generalizes a number of previous partial results to their question.  相似文献   

10.
A graph is ‐colorable if its vertex set can be partitioned into r sets so that the maximum degree of the graph induced by is at most for each . For a given pair , the question of determining the minimum such that planar graphs with girth at least g are ‐colorable has attracted much interest. The finiteness of was known for all cases except when . Montassier and Ochem explicitly asked if d2(5, 1) is finite. We answer this question in the affirmative with ; namely, we prove that all planar graphs with girth at least five are (1, 10)‐colorable. Moreover, our proof extends to the statement that for any surface S of Euler genus γ, there exists a where graphs with girth at least five that are embeddable on S are (1, K)‐colorable. On the other hand, there is no finite k where planar graphs (and thus embeddable on any surface) with girth at least five are (0, k)‐colorable.  相似文献   

11.
A graph G is equimatchable if each matching in G is a subset of a maximum‐size matching and it is factor critical if has a perfect matching for each vertex v of G. It is known that any 2‐connected equimatchable graph is either bipartite or factor critical. We prove that for 2‐connected factor‐critical equimatchable graph G the graph is either or for some n for any vertex v of G and any minimal matching M such that is a component of . We use this result to improve the upper bounds on the maximum number of vertices of 2‐connected equimatchable factor‐critical graphs embeddable in the orientable surface of genus g to if and to if . Moreover, for any nonnegative integer g we construct a 2‐connected equimatchable factor‐critical graph with genus g and more than vertices, which establishes that the maximum size of such graphs is . Similar bounds are obtained also for nonorientable surfaces. In the bipartite case for any nonnegative integers g, h, and k we provide a construction of arbitrarily large 2‐connected equimatchable bipartite graphs with orientable genus g, respectively nonorientable genus h, and a genus embedding with face‐width k. Finally, we prove that any d‐degenerate 2‐connected equimatchable factor‐critical graph has at most vertices, where a graph is d‐degenerate if every its induced subgraph contains a vertex of degree at most d.  相似文献   

12.
A set S of vertices in a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. The independent domination number of G, denoted by , is the minimum cardinality of an independent dominating set. In this article, we show that if is a connected cubic graph of order n that does not have a subgraph isomorphic to K2, 3, then . As a consequence of our main result, we deduce Reed's important result [Combin Probab Comput 5 (1996), 277–295] that if G is a cubic graph of order n, then , where denotes the domination number of G.  相似文献   

13.
We study theorems giving sufficient conditions on the vertex degrees of a graph G to guarantee G is t‐tough. We first give a best monotone theorem when , but then show that for any integer , a best monotone theorem for requires at least nonredundant conditions, where grows superpolynomially as . When , we give an additional, simple theorem for G to be t‐tough, in terms of its vertex degrees.  相似文献   

14.
For graphs G and H, a homomorphism from G to H, or Hcoloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have where is the complete bipartite graph with d vertices in each partition class, and is the complete graph on vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by . Here, we exhibit for the first time infinitely many nontrivial triples for which the conjecture is true and for which the maximum is achieved by .We also give sharp estimates for and in terms of some structural parameters of H. This allows us to characterize those H for which is eventually (for all sufficiently large d) larger than and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have where as . More precise results are obtained in some special cases.  相似文献   

15.
Galvin showed that for all fixed δ and sufficiently large n, the n‐vertex graph with minimum degree δ that admits the most independent sets is the complete bipartite graph . He conjectured that except perhaps for some small values of t, the same graph yields the maximum count of independent sets of size t for each possible t. Evidence for this conjecture was recently provided by Alexander, Cutler, and Mink, who showed that for all triples with , no n‐vertex bipartite graph with minimum degree δ admits more independent sets of size t than . Here, we make further progress. We show that for all triples with and , no n‐vertex graph with minimum degree δ admits more independent sets of size t than , and we obtain the same conclusion for and . Our proofs lead us naturally to the study of an interesting family of critical graphs, namely those of minimum degree δ whose minimum degree drops on deletion of an edge or a vertex.  相似文献   

16.
Two n‐vertex hypergraphs G and H pack, if there is a bijection such that for every edge , the set is not an edge in H. Extending a theorem by Bollobás and Eldridge on graph packing to hypergraphs, we show that if and n‐vertex hypergraphs G and H with with no edges of size 0, 1, and n do not pack, then either
  1. one of G and H contains a spanning graph‐star, and each vertex of the other is contained in a graph edge, or
  2. one of G and H has edges of size not containing a given vertex, and for every vertex x of the other hypergraph some edge of size does not contain x.
  相似文献   

17.
18.
A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G, denoted by , is the intersection graph of the bicliques of G. We say that a graph G diverges (or converges or is periodic) under an operator F whenever ( for some m, or for some k and , respectively). Given a graph G, the iterated biclique graph of G, denoted by , is the graph obtained by applying the biclique operator k successive times to G. In this article, we study the iterated biclique graph of G. In particular, we classify the different behaviors of when the number of iterations k grows to infinity. That is, we prove that a graph either diverges or converges under the biclique operator. We give a forbidden structure characterization of convergent graphs, which yield a polynomial time algorithm to decide if a given graph diverges or converges. This is in sharp contrast with the situsation for the better known clique operator, where it is not even known if the corresponding problem is decidable. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 181–190, 2013  相似文献   

19.
Let denote the graph obtained from the complete graph by deleting the edges of some ‐subgraph. The author proved earlier that for each fixed s and , every graph with chromatic number has a minor. This confirmed a partial case of the corresponding conjecture by Woodall and Seymour. In this paper, we show that the statement holds already for much smaller t, namely, for .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号