首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study offers a unique insight into the mass accuracy and resolving power requirements in MS/MS analyses of complex product ion spectra. In the examples presented here, accurate mass assignments were often difficult because of multiple isobaric interferences and centroid mass shifts. The question then arose whether the resolving power of a medium-resolution quadrupole time-of flight (QqTOF) is sufficient or high-resolution Fourier-transform ion cyclotron resonance (FT-ICR) is required for unambiguous assignments of elemental compositions. For the comparison, two paralytic shellfish poisons (PSP), saxitoxin (STX) and neosaxitoxin (NEO), with molecular weights of 299 and 315 g x mol(-1), respectively, were chosen because of the high peak density in their MS/MS spectra. The assessment of QqTOF collision-induced dissociation spectra and FT-ICR infrared multiphoton dissociation spectra revealed that several intrinsic dissociation pathways leading to isobaric fragment ions could not be resolved with the QqTOF instrument and required FT-ICR to distinguish very close mass differences. The second major source of interferences was M + 1 species originating from coactivated 13C12Cc-1 ion contributions of the protonated molecules of the PSPs. The problem in QqTOF MS results from internal mass calibration when the MH+ ions of analyte and mass calibrant are activated at the same time in the collision or trapping cell. Although FT-ICR MS readily resolved these interfering species, the QqTOF did not provide resolving power >20,000 (full width at half maximum) required to separate most isobaric species. We were able to develop a semi-internal QqTOF calibration technique that activated only the isolated 12C isotope species of the protonated molecules, thus reducing the M + 1 interferences significantly. In terms of overall automated elemental formulas assignment, FT-ICR MS achieved the first formula hit for 100% of the product ions, whereas the QqTOF MS hit rate was only 56 and 65% for STX and NEO product ions, respectively. External mass calibration from commercial FT-ICR and QqTOF instruments gave similar results.  相似文献   

2.
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field.  相似文献   

3.
Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS n . The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS n fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS n experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS n methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.  相似文献   

4.
Abstract

Underivatized mono- and multisulfated oligosaccharides obtained by the alkalineborohydride treatment of human respiratory mucous glycoproteins were analyzed by positive ion fast atom bombardment mass spectrometry (FAB MS). Employing three unique and structurally homologous groups, the FAB mass spectra of a mono- and a disulfated tri- and tetrasaccharide and a mono-, di- and trisulfated branched hexasaccharide were compared. Each produced mass spectra displaying molecular weight-related and structurally significant fragment ions including fragments differing in mass by multiples of 102 amu reflecting the loss of one or more sulfate esters. From these data, combined with monosaccharide composition, the carbohydrate sequence and number and location of sulfate esters can readily be determined. These findings, with other chemical and enzymatic analyses, make FAB MS a valuable tool applicable to the unambiguous structural elucidation of underivatized reduced, linear and branched, mucous glycoprotein oligosaccharides that vary in degree of sulfation.  相似文献   

5.
Characterization of orphan enzymes, for which the catalytic functions and actual substrates are still not elucidated, is a significant challenge in the postgenomic era. Here, we describe a general strategy for exploring the catalytic potentials of orphan monooxygenases based on direct infusion analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). Eight cytochromes P450 from Bacillus subtilis were recombinantly expressed in Escherichia coli and subjected to a reconstitution system containing appropriate electron transfer components and many potential substrates. The reaction mixtures were directly analyzed using FT-ICR/MS, and substrates of the putative enzymes were readily identified from the mass spectral data. This allowed identification of previously unreported CYP109B1 substrates and the functional assignment of two putative cytochromes P450, CYP107J1 and CYP134A1. The FT-ICR/MS-based approach can be easily applied to large-scale screening with the aid of the extremely high mass resolution and accuracy.  相似文献   

6.
With the emergence of top-down proteomics, the ability to achieve high mass measurement accuracy on tandem MS/MS data will be beneficial for protein identification and characterization. (FT-ICR) Fourier transform ion cyclotron resonance mass spectrometers are the ideal instruments to perform these experiments with their ability to provide high resolution and mass accuracy. A major limitation to mass measurement accuracy in FT-ICR instruments arises from the occurrence of space charge effects. These space charge effects shift the cyclotron frequency of the ions, which compromises the mass measurement accuracy. While several methods have been developed that correct these space charge effects, they have limitations when applied to MS/MS experiments. It has already been shown that additional information inherent in electrospray spectra can be used for improved mass measurement accuracy with the use of a computer algorithm called DeCAL (deconvolution of Coulombic affected linearity). This paper highlights a new application of the strategy for improved mass accuracy in tandem mass analysis. The results show a significant improvement in mass measurement accuracy on complex electron capture dissociation spectra of proteins. We also demonstrate how the improvement in mass accuracy can increase the confidence in protein identification from the fragment masses of proteins acquired in MS/MS experiments.  相似文献   

7.
To look into complex mixtures of petroleum heavy ends at the molecular level, ultra high-resolution mass spectrometry, i.e. resolving power > 50,000, is needed to resolve overlapping components for accurate determination of molecular composition of individual components. Recent progress in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) incorporated with soft ionization techniques adaptable to liquid chromatography enables analysis of petroleum high ends, i.e., heavy oils, residua and asphaltenes. FT-ICR MS at the Future Fuels Institute of Florida State University and the National High Magnetic Field Laboratory (NHMFL) routinely provides 1,000,000 resolving power at 400 Da, with root mean square (rms) mass measurement accuracy between 30 and 500 ppb for 5000-30,000 identified species in a single mass spectrum. Phase correction of the detected ion signal increases resolving power 40-100%, improving mass accuracy up to twofold. Overlapping ionic species that differ in mass by as little as one electron mass (548 μDa) can be resolved. A database of more than 100,000 components of different elemental composition has been generated at NHMFL.  相似文献   

8.
Coupling of a cryogenic preconcentrator (PC) to a gas chromatograph/Fourier transform ion cyclotron resonance mass spectrometer (GC/FT-ICR MS) is reported. To demonstrate the analytical capabilities of the PC/GC/FT-ICR MS, headspace samples containing volatile organic compounds (VOCs) emitted from detached pine tree twigs were analyzed. Sub-ppm mass measurement accuracy (MMA) for highly resolved (m/Deltam(50%) > 150 k) terpene ions was achieved. Direct PC/GC/FT-ICR MS analyses revealed that detached twigs from pine trees emit acetone, camphor, and four detectable hydrocarbon isomers with C(10)H(16) empirical formula. The unknown analytes were identified based on accurate mass measurement and their mass spectral appearances. Authentic samples were used to confirm initially unknown identifications. Self-chemical-ionization (SCI) reactions furnished an additional dimension for rapid isomer differentiation of GC eluents in real time.  相似文献   

9.
Heparan sulfate, a cell surface bound glycosaminoglycan polysaccharide, has been implicated in numerous biological functions. Heparan sulfate molecules are highly complex and diverse, yet deceivingly look simple and similar, rendering structure--function correlation tedious. Current chromatographic and mass spectrometric techniques have limitations for analyzing glycosaminoglycan samples that are in low abundance and that are large in size, due to their highly acidic nature arising from a large number of sulfate and of carboxylate groups. A new methodology was developed using capillary ion-paired reverse-phase C18 HPLC directly coupled to ESI-TOF-MS to address the above issues. On the basis of HS disaccharide analysis, dibutylamine was found to be the best suited for HS analysis among many ion-pairing agents investigated. Next, analysis of oligosaccharides derived from heparosan, the precursor for heparan sulfate, was undertaken to demonstrate its greater applicability in a more complex structural analysis. The established chromatographic conditions enabled the characterization of heparosan oligosaccharides of sizes up to tetracontasaccharide with high resolution in a single run and were amenable to negative ion electrospray MS in which sodium adduction and fragmentation were avoided. To date, these are the largest nonsulfated HS precursor oligosaccharides to be characterized by LC/MS. Finally, the current methodology was applied to the characterization of the biologically important ATIII binding pentasaccharide and its precursors, which differ from each other by sulfation pattern and/or degree of sulfation. All of these pentasaccharides were well-resolved and characterized by the LC/MS system with (34)SO(4) as a mass spectral probe. This newly developed methodology facilitates the purification and rapid characterization of biologically significant HS oligosaccharides, and will thus expedite their synthesis. These findings should undoubtedly pave the way in deciphering multiple functional arrangements, ascribed to many biological activities, which are predictably embedded in a single large chaotic, yet well-organized HS polysaccharide chain. Development of newer techniques for HS oligosaccharide analysis is greatly needed in the postgenome era as attention shifts to the functional implications of proteins and carbohydrates in general and HS in particular.  相似文献   

10.
A novel approach in glycosaminoglycomics, based on sheathless on-line capillary electrophoresis/nanoelectrospray ionization-quadrupole time of flight-mass spectrometry (CE/nanoESI-QTOF-MS) and tandem MS of extended chondroitin sulfate/dermatan (CS/DS) oligosaccharide chains is described. The methodology required the construction of a new sheathless CE/nanoESI-QTOF-MS configuration, its implementation and optimization for the high sensitivity analysis of CS/DS oligosaccharide mixtures from conditioned culture medium of decorin transfected human embryonic kidney (HEK) 293 cells. Under newly established sheathless on-line CE/(-)nanoESI conditions for glycosaminoglycan (GAG) ionization and MS detection, single CS/DS oligosaccharide components of extended chain length and increased sulfation degree were identified. Molecular ions corresponding to species carrying 5 and 6 negative charges could be generated for large GAG oligosaccharide species in the negative ion nanoESI-MS. The optimized on-line conditions enabled the detection of molecular ions assigned to oversulfated tetradeca-, octadeca-, and eicosasaccharide CS/DS molecules, which represent the category of largest sulfated GAG-derived oligosaccharides evidenced by CE/ESI-MS. By on-line CE/ESI tandem MS in data-dependent acquisition mode the oversulfated eicosasaccharide species could be sequenced and the localization of the additional sulfate group along the chain could be determined.  相似文献   

11.
Protein identifications by peptide mass fingerprint analyses with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were performed using microelectrospray ionization coupled to nano liquid chromatography (NanoLC), as well as using matrix-assisted laser desorption/ionization (MALDI). Tryptic digests of bovine serum albumin (BSA), diluted down to femtomole quantities, have been desalted by fast NanoLC under isocratic elution conditions as the high resolving power of FT-ICR MS enables peptides to be separated during the mass analysis stage of the experiment. The high mass accuracy achieved with FT-ICR MS (a few ppm with external calibration) facilitated unambiguous protein identification from protein database searches, even when only a few tryptic peptides of a protein were detected. Statistical confidence in the database search results was further improved by internal calibration due to increased mass accuracy. Matrix-assisted laser desorption/ionization and micro electrospray ionization (ESI) FT-ICR showed good mass accuracies in the low femtomole range, yet a better sensitivity was observed with MALDI. However, in higher femtomole ranges slightly lower mass accuracies were observed with MALDI FT-ICR than with microESI FT-ICR due to scan-to-scan variations of the ion population in the ICR cell. Database search results and protein sequence coverage results from NanoLC FT-ICR MS and MALDI FT-ICR MS, as well as the effect of mass accuracy on protein identification for the peptide mass fingerprint analysis are evaluated.  相似文献   

12.
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) is the best MS technology for obtaining exact mass measurements owing to its great resolution and accuracy, and several outstanding FT-ICR/MS-based metabolomics approaches have been reported. A reliable annotation scheme is needed to deal with direct-infusion FT-ICR/MS metabolic profiling. Correlation analyses can help us not only uncover relations between the ions but also annotate the ions originated from identical metabolites (metabolite derivative ions). In the present study, we propose a procedure for metabolite annotation on direct-infusion FT-ICR/MS by taking into consideration the classification of metabolite-derived ions using correlation analyses. Integrated analysis based on information of isotope relations, fragmentation patterns by MS/MS analysis, co-occurring metabolites, and database searches (KNApSAcK and KEGG) can make it possible to annotate ions as metabolites and estimate cellular conditions based on metabolite composition. A total of 220 detected ions were classified into 174 metabolite derivative groups and 72 ions were assigned to candidate metabolites in the present work. Finally, metabolic profiling has been able to distinguish between the growth stages with the aid of PCA. The constructed model using PLS regression for OD600 values as a function of metabolic profiles is very useful for identifying to what degree the ions contribute to the growth stages. Ten phospholipids which largely influence the constructed model are highly abundant in the cells. Our analyses reveal that global modification of those phospholipids occurs as E. coli enters the stationary phase. Thus, the integrated approach involving correlation analyses, metabolic profiling, and database searching is efficient for high-throughput metabolomics. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Combining source collision-induced dissociation (CID) and tandem mass spectral acquisition in a pseudo-MS(3) experiment using a linear ion trap results in a highly selective and sensitive approach to identifying glycopeptide elution from a protein digest. The increased sensitivity is partially attributed to the nonselective nature of source CID, which allows simultaneous activation of all charge states and coeluting glycoforms generating greater ion abundance for the mass-to-charge (m/z) 204 and/or 366 oxonium ions. Unlike source CID alone, a pseudo-MS(3) approach adds selectivity while improving sensitivity by eliminating chemical noise during the tandem mass spectral acquisition of the oxonium ions in the linear ion trap. Performing the experiments in the hybrid linear ion trap/Fourier transform-ion cyclotron resonance (FT-ICR) enables subsequent high-resolution/high-mass accuracy full-scan mass spectra (MS) and parallel acquisition of MS/MS in the linear ion trap to be completed in 2 s directly following the pseudo-MS(3) scan to collate identification and characterization of glycopeptides in one experimental scan cycle. Analysis of bovine fetuin digest using the combined pseudo-MS(3), high-resolution MS, and data-dependent MS/MS events resulted in identification of four N-linked and two O-linked glycopeptides without enzymatic cleavage of the sugar moiety or release of the sialic acids before analysis. In addition, over 95% of the total protein sequence was identified in one analytical run.  相似文献   

14.
Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy, and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (mm 50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with mm 50%?>?3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.
Figure
C60 secondary ion FT-ICR MS provides unprecedented mass resolving power and mass accuracy for SIMS imaging of biological tissue sections. Overlaid selected ion images from rat brain (left) and high spatial resolution imaging of organic dye underneath a TEM grid (right).  相似文献   

15.
We decoupled electron-transfer dissociation (ETD) and collision-induced dissociation of charge-reduced species (CRCID) events to probe the lifetimes of intermediate radical species in ETD-based ion trap tandem mass spectrometry of peptides. Short-lived intermediates formed upon electron transfer require less energy for product ion formation and appear in regular ETD mass spectra, whereas long-lived intermediates require additional vibrational energy and yield product ions as a function of CRCID amplitude. The observed dependencies complement the results obtained by double-resonance electron-capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ECD in a cryogenic ICR trap. Compared with ECD FT-ICR MS, ion trap MS offers lower precursor ion internal energy conditions, leading to more abundant charge-reduced radical intermediates and larger variation of product ion abundance as a function of vibrational post-activation amplitude. In many cases decoupled CRCID after ETD exhibits abundant radical c-type and even-electron z-type ions, in striking contrast to predominantly even-electron c-type and radical z-type ions in ECD FT-ICR MS and especially activated ion-ECD, thus providing a new insight into the fundamentals of ECD/ETD.  相似文献   

16.
A sensitive, integrated top-down liquid chromatography/mass spectrometry (LC/MS) approach, suitable for the near complete characterization of specific proteins in complex protein mixtures, such as inclusion bodies of an E. coli lysate, has been successfully developed using a hybrid linear ion trap/Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. In particular, human growth hormone (hGH) (200 fmol) was analyzed with high sequence coverage (>95%), including the sites of disulfide linkages. The high mass accuracy and resolution of the FTICR mass spectrometer was used to reveal high charge state ions of hGH (22 kDa). The highly charged intact protein ions (such as the 17+ species) were captured and fragmented in the linear ion trap cell. The fragment ions from MS/MS spectra were then successfully analyzed in the FTICR cell in an on-line LC/MS run. Peptide fragments from the N-terminal and C-terminal regions, as well as large interior fragments, were captured and identified. The results allowed the unambiguous assignment of disulfide bonds Cys53-Cys165 and Cys182-Cys189, indicative of proper folding of hGH. The disulfide bond assignments were also confirmed by analysis of the tryptic digest of a sample of hGH purified from inclusion bodies. On-line LC/MS with the linear ion trap/FTICR yields high mass accuracy in both the MS and MS/MS modes (within 2 ppm with external calibration). The approach should prove useful in biotechnology applications to characterize correctly folded proteins, both in the early protein expression and the later processed stages, using only a single automated on-line LC/MS top-down method.  相似文献   

17.
Sulfation pattern within chondroitin sulfate (CS) glycosaminoglycan (GAG) chains is an important post-translational modification that regulates their interaction with proteins. In this context, development of highly efficient and reproducible analytical methods for the investigation of CS sulfation patterns is of high necessity. In this study we report a novel method for straightforward determination of N-acetylgalactosamine (GalNAc) sulfation sites in chondroitin sulfate disaccharides. Our protocol involves combining fully automated chip-based nanoelectrospray (nanoESI) for analyte infusion and ionization in negative ion mode with multistage (MSn) collision-induced dissociation (CID) high capacity ion trap (HCT) mass spectrometry for generation of sequence ions diagnostic for identification of sulfate ester group position within GalNAc residues. The feasibility of this approach is here demonstrated on chondroitin 6-O-sulfate and chondroitin 4-O-sulfate disaccharides. Fragmentation patterns obtained by MS2 and MS3 sequencing stages provided first mass spectrometric data from which sulfation site(s) within GalNAc monosaccharide ring could be unequivocally deciphered. Hence, the method allowed discriminating 4S/6S sulfation sites solely on the basis of MS and multistage MS evidence.   相似文献   

18.
Two isomeric pairs of 2-aminopyridine (PA)-derivatized fucosylated and non-fucosylated oligosaccharides (complex-type N-glycans of IgG) were analyzed using liquid chromatography/ion trap mass spectrometry (LC/ITMS) with a sonic spray ionization source and by varying the collision-induced dissociation voltage. Reproducibility of MS(n) (n = 2) spectra obtained by LC/ITMS was tested considering both fragment ions (m/z) and intensities. A comparison of their MS(n) spectra and evaluation of similarities (or matching), based on correlation coefficients between MS(n) spectra, was investigated as a possibility for structural assignment of the isomers. It is shown that such MS(n) spectral matching is useful and applicable to the structural assignment of relatively large fucosylated and sialylated PA-oligosaccharides released from IgG based on Bn- and Yn-type fragmentations of the corresponding [M+H+Na](2+) ions.  相似文献   

19.
Chondroitin sulfate (CS) is a glycosaminoglycan consisting of repeating (HexA-GalNAc sulfate) disaccharides, the functions of which depend on patterns of sulfation and uronic acid epimerization. The correlation of biological activities with structure requires a strategy to determine the sequences of CS oligosaccharides without the need for total isolation. Tandem mass spectrometry has enabled the development of proteomics, based on CID fragmentation of ions produced from complex mixtures of proteolytic peptides, and has the potential for rapid sequencing of CS and other glycosaminoglycan classes. The most challenging aspects of CS sequencing are to distinguish GalNAc residues sulfated at the 4- versus the 6-position and uronic acid epimers. This work describes the utility of (1) reducing terminal derivatives and (2) control of precursor ion charge state for tandem mass spectrometric strategies for determining GalNAc sulfation positional isomers of CS. The capability of tandem MS to differentiate uronic acid epimers is also shown, providing evidence that complete or nearly complete information on CS covalent structure may be obtained using tandem MS.  相似文献   

20.
A strategy based on a regioselective 6-O-desulfation reaction and negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)) was developed for the structural delineation of isomeric chondroitin sulfate oligosaccharides. Product ions resulting from the glycosidic cleavage provided information about the number of sulfate groups in each sugar residue. After the regioselective 6-O-desulfation reaction, the number of sulfate groups on each residue was obtained using a tandem mass spectrometry analysis of the reaction product. The sulfation pattern could be obtained based on the product ions of analytes before and after the desulfation reaction. The strategy was demonstrated using a series of tetrasaccharides prepared from shark cartilage chondroitin sulfate D. Among the 12 identified tetrasaccharides, six structures had not been reported before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号