首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boxing clever : Direct conversion of a terminal alkyne group into a β‐methoxyacrylate is realized with the aid of the bis(oxazoline) ligand (box). Acetyl and ketal protecting groups, free hydroxy groups, and acid‐sensitive glycosidic bonds are not affected under the reaction conditions. The one‐pot synthesis of (±)‐dihydrokawain from the homopropargyl alcohol is also achieved. tfa=trifluoroacetate

  相似文献   


2.
The methoxycarbonylation of alkenes catalyzed by palladium(II) complexes with P,N-donor ligands, 2-(diphenylphosphinoamino)pyridine (Ph2PNHpy), 2-[(diphenylphosphino)methyl]pyridine (Ph2PCH2py), and 2-(diphenylphosphino)quinoline (Ph2Pqn) has been investigated. The results show that the complex [PdCl(PPh3)(Ph2PNHpy)]Cl or an equimolar mixture of [PdCl2(Ph2PNHpy)] and PPh3, in the presence of p-toluensulfonic acid (TsOH), is an efficient catalyst for this reaction. This catalytic system promotes the conversion of styrene into methyl 2-phenylpropanoate and methyl 3-phenylpropanoate with nearly complete chemoselectivity, 98% regioselectivity in the branched isomer, and high turnover frequency, even at alkene/Pd molar ratios of 1000. Best results were obtained in toluene-MeOH (3 : 1) solvent. The Pd/Ph2PNHpy catalyst is also efficient in the methoxycarbonylation of cyclohexene and 1-hexene, although with lower rates than with styrene. Related palladium complexes [PdCl(PPh3)L]Cl (L = Ph2PCH2py and Ph2Pqn) show lower activity in the methoxycarbonylation of styrene than that of the 2-(diphenylphosphinoamino)pyridine ligand. Replacement of the last ligand by (diphenylphosphino)phenylamine (Ph2PNHPh) or 2-(diphenylphosphinoaminomethyl)pyridine (Ph2PNMepy) also reduces significantly the activity of the catalyst, indicating that both the presence of the pyridine fragment as well as the NH group, are required to achieve a high performing catalyst. Isotopic labeling experiments using MeOD are consistent with a hydride mechanism for the [PdCl(PPh3)(Ph2PNHpy)]Cl catalyst.  相似文献   

3.
Reactions of 2‐[1‐(3,5‐dimethylpyrazol‐1‐yl)ethyl]pyridine (L1) and 2‐[1‐(3,5‐diphenylpyrazol‐1‐yl)ethyl]pyridine (L2) with the [Pd (COD)Cl2] or [Pd (COD)MeCl] produced palladium (II) complexes [Pd( L1 )ClMe] ( 1 ), [Pd( L1 )Cl2] ( C2 ), [Pd( L2 )ClMe] ( 3 ), and [Pd( L2 )Cl2] ( 4 ) in quantitative yields. Solid state structures of complexes 1 , 3 and 4 established the formation of mononuclear compounds, containing one bidentate ligand unit per metal atom, to give square planar complexes. All the other spectroscopic characterization data and elemental analyses were consistent with the observed structures. All the palladium (II) complexes 1–4 gave active catalysts in the methoxycarbonylation of 1‐octenes. The catalysts demonstrated 100% chemoselectivities towards esters and favored the formation of linear isomers. Reaction conditions such as the type of phosphine derivative, acid promoter, solvent system, time, pressure and temperature have been investigated and shown to affect both the catalytic activity and regio‐selectivity of the catalysts. Solid‐angle modelling established the comparable steric contributions from the ligands, consistent with the similar regioselectivities of the resultant catalysts.  相似文献   

4.
5.
6.
7.
A series of vanadium(V) complexes bearing tetradentate amine trihydroxy ligands [NOOO], which differ in the steric and electronic properties, have been synthesized and characterized. Single crystal X‐ray analysis showed that these complexes are five or six coordinated around the vanadium center in the solid state. Their coordination geometries are octahedral or trigonal bipyramidal. In the presence of Et2AlCl, these complexes have been investigated as the efficient catalysts for ethylene polymerization and ethylene/norbornene copolymerization at elevated reaction temperature and produced the polymers with unimodal molecular weight distributions (MWDs), indicating the single site behaviors of these catalysts. Both the steric hindrance and electronic effect of the groups on the tetradentate ligands directly influenced catalytic activity and the molecular weights of the resultant (co)polymers. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, ethylene pressure, and comonomer concentration, are also examined in detail. Furthermore, high catalytic activities of up to 3.30 kg polymer/mmolV·h were also observed when these complexes were applied to catalyze the copolymerization of ethylene and 5‐norbornene‐2‐methanol, producing the high‐molecular‐weight copolymers (Mw = 157–400 kg/mol) with unimodal MWDs (Mw/Mn = 2.5–3.0) and high polar comonomer incorporations (up to 12.3 mol %). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1122–1132, 2010  相似文献   

8.
{[2-(dimethylamino)ethyl]cyclopentadienyl}titanium trichloride (CpNTiCl3, 1 ) was activated with methylaluminoxane (MAO) to catalyze polymerizations of ethylene (E), propylene (P), ethylidene norbornene (ENB), vinylcyclohexene (VCH), and 1,4-hexadiene (HD). The dependence of homopolymerization activity ( A ) of 1 /MAO on olefin concentration ([M]n) is n = 2.0 ± 0.5 for E and n = 1.8 ± 0.2 for P. The value of n is 2.4 ± 0.2 for CpTiCl3/MAO catalysis of ethylene polymerization; this system does not polymerize propylene. 1 /MAO catalyzes HD polymerization at one-tenth of A H for 1-hexene, probably because of chelation effects in the HD case. The copolymerization of E and P has reactivity ratios of rE = 6.4 and rP = 0.29 at 20°C, and rErP = 1.9, which suggests 1 /MAO may be a multisite catalyst. The copolymerization activity of CpTiCl3/MAO is 50 times smaller than that of CpNTiCl3/MAO. Terpolymerization of E/P/ENB has A of 105 g of polymer/(mol of Ti h), incorporates up to 14 mol % (∼ 40 wt %) of ENB, and high MW's of 1 to 3 × 105. All of these parameters are surprisingly insensitive to the ENB concentration. The E/P/VCH terpolymerization has comparable A value of (1.3 ± 0.3) × 105 g/(mol of Ti h). The incorporation of VCH in terpolymer increases with increasing [VCH]. Terpolymerization with HD occurs at about one-third of the A of either ENB or VCH; the product HD–EPDM is low in molecular weight and contains less than 4% of HD. These terpolymerization results are compared with those obtained previously for three zirconocene precursors: rac-ethylenebis(1-η5-indenyl)dichlorozirconium ( 6 ), rac-(dimethylsilylene)bis(1-η5-indenyl)dichlorozirconium ( 7 ), and ethylenebis(9-η5-fluorenyl)dichlorozirconium ( 8 ). The last compound is a particularly poor terpolymerization catalyst; it incorporates very little VCH or HD and no ENB at all. 7 /MAO is a better catalyst for E/P/VCH terpolymerization, while 6 /MAO is superior in E/P/HD terpolymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 319–328, 1998  相似文献   

9.
Benzoylhydrazone Schiff base–ligated three new ONO pincer–type palladium(II) complexes, [(PdL1(PPh3)] ( 1 ), [(PdL2(PPh3)] ( 2 ), and [(PdL3(PPh3)] ( 3 ), were synthesized by the reaction of the respective ligand, N-(2-hydroxybenzylidene)benzohydrazide (HL1), N-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (HL2), or N-(5-bromo-2-hydroxybenzylidene) benzohydrazide (HL3), with Pd(OAc)2 and PPh3 in methanol and isolated as air-stable reddish-orange crystalline solids in high yields (78%–83%). All three complexes were fully characterized by elemental analysis, Fourier-transform infrared spectroscopy, UV–Visible, 1H nuclear magnetic resonance (NMR), 13C{1H} NMR, and 31P{1H} NMR spectroscopic studies. The molecular structure of all three complexes was established unambiguously by single-crystal X-ray diffraction studies which revealed a distorted square planar geometry of all three complexes. The ONO pincer–type ligands occupied three coordination sites at the palladium, while the fourth site is occupied by the monodentate triphenylphosphine ligand. The catalytic potential of all three complexes was explored in the carbonylative Suzuki coupling of aryl bromides and iodides with arylboronic acids to yield biaryl ketones, using CHCl3 as the source of carbonyl. The reported protocol is convenient and safe as it obviates the use of carbon monoxide (CO) balloons or pressured CO reactors which are otherwise needed for the carbonylation reactions. The methodology has been successfully applied to the synthesis of two antineoplastic drugs, namely, phenstatin and naphthylphenstatin, in good yields (81% and 85%, respectively). Under the optimized reaction conditions, complex 2 exhibited the best catalytic activity in the carbonylative Suzuki couplings. The reported catalysts have wide reaction scope with good functional group tolerance. All catalysts could be retrieved from the reaction after completion and recycled up to three times with insignificant loss in the catalytic activity.  相似文献   

10.
A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2‐alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures.  相似文献   

11.
A palladium-catalyzed intramolecular iodoetherification of alkenes is reported. The reaction is efficient and highly diastereoselective for disubstituted alkenes. The tether length between the alcohol and alkene can be varied to produce tetrahydrofuran and tetrahydropyran rings. Diphosphine palladium(II) salts are highly active catalysts enabling future studies on the development of an enantioselective process.  相似文献   

12.
13.
The reactivity of palladium complexes of bidentate diaryl phosphane ligands (P2) was studied in the reaction of nitrobenzene with CO in methanol. Careful analysis of the reaction mixtures revealed that, besides the frequently reported reduction products of nitrobenzene [methyl phenyl carbamate (MPC), N,N′‐diphenylurea (DPU), aniline, azobenzene (Azo) and azoxybenzene (Azoxy)], large quantities of oxidation products of methanol were co‐produced (dimethyl carbonate (DMC), dimethyl oxalate (DMO), methyl formate (MF), H2O, and CO). From these observations, it is concluded that several catalytic processes operate simultaneously, and are coupled via common catalytic intermediates. Starting from a P2Pd0 compound formed in situ, oxidation to a palladium imido compound P2PdII?NPh, can be achieved by de‐oxygenation of nitrobenzene 1) with two molecules of CO, 2) with two molecules of CO and the acidic protons of two methanol molecules, or 3) with all four hydrogen atoms of one methanol molecule. Reduction of P2PdII?NPh to P2Pd0 makes the overall process catalytic, while at the same time forming Azo(xy), MPC, DPU and aniline. It is proposed that the Pd–imido species is the central key intermediate that can link together all reduction products of nitrobenzene and all oxidation products of methanol in one unified mechanistic scheme. The relative occurrence of the various catalytic processes is shown to be dependent on the characteristics of the catalysts, as imposed by the ligand structure.  相似文献   

14.
Dinuclear palladium complexes bridged by a novel PNNP ligand, N,N′-bis[(2-diphenylphosphino)phenylformamidinate (dpfam), were found to be very efficient and selective catalysts for the double carbonylation of iodobenzene with diethylamine using K3PO4 as base and 1,4-dioxane as solvent with a TON up to 105 and selectivity of 96%.  相似文献   

15.
The catalytic efficacy of trans‐[(R3P)2Pd(O2CR′)(LB)][B(C6F5)4] ( 1 ) (LB = Lewis base) and [(R3P)2Pd(κ2O,O‐O2CR′)][B(C6F5)4] ( 2 ) for mass polymerization of 5‐n‐butyl‐2‐norbornene (Butyl‐NB) was investigated. The nature of PR3 and LB in 1 and 2 are the most critical components influencing catalytic activity/latency for the mass polymerization of Butyl‐NB. Further, it was shown that 1 is in general more latent than 2 in mass polymerization of Butyl‐NB. 5‐n‐Decyl‐2‐norbornene (Decyl‐NB) was subjected to solution polymerization in toluene at 63(±3) °C in the presence of several of the aforementioned palladium complexes as catalysts and the polymers obtained were characterized by gel permeation chromatography. Cationic trans‐[(R3P)2PdMe(MeCN)][B(C6F5)4] [R = Cy ( 3a ), and iPr ( 3b )] and trans‐[(R3P)2PdH (MeCN)][B(C6F5)4] [R = Cy ( 4a ), and iPr ( 4b )], possible products from thermolysis of trans‐[(R3P)2Pd(O2CMe)(MeCN)][B(C6F5)4] [R = Cy ( 1a ) and iPr ( 1g )], as well as trans‐[(R3P)2Pd(η3‐C3H5)][B(C6F5)4] [R = Cy ( 5a ), and iPr ( 5b )], were also examined as catalysts for solution polymerization of Decyl‐NB. A maximum activity of 5360 kg/(molPd h) of 2a was achieved at a Decyl‐NB/Pd: 26,700 ratio which is slightly better than that achieved with 5a [activity: 5030 kg/(molPd h)] but far less compared with 4a [activity: 6110 kg/(molPd h)]. Polydispersity values indicate a single highly homogeneous character of the active catalyst species. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 103–110, 2009  相似文献   

16.
The pendant nitrogen atom of the Ph2PPy ligand in the Pd(II)-allyl complexes [PdCl(η3-2-CH3-C3H4)(Ph2PPy)] (1) and [Pd(η3-2-CH3-C3H4)(Ph2PPy)2]BF4 (3) has been protonated with methanesulfonic acid to afford the corresponding pyridinium salts [PdCl(η3-2-CH3-C3H4)(Ph2PPyH)](CH3SO3) (1a) and [Pd(η3-2-CH3-C3H4)(Ph2PPyH)2](CH3SO3)2(BF4) (3a).Protonation strongly influences the 1H and 13C NMR spectral parameters of the allyl moieties of 1a and 3a whose signals resonate at lower fields with respect to the parent species indicating that upon protonation Ph2PPy becomes a weaker σ-donor and a stronger Π-acceptor. The allyl moiety, which in 1 is static, becomes dynamic in 1a, the observed syn-syn and anti-anti exchange being due to deligation of the protonated phosphine from the metal centre. Treatment of complex 3 with diethylamine in the presence of fumaronitrile gives the new Pd(0)-olefin complex [Pd(η2-fumaronitrile)(PPh2Py)2] (4) which has been characterized by elemental analysis and NMR spectroscopy. Low temperature protonation of 4 with methanesulfonic acid leads to the bis-protonated species [Pd(η2-fumaronitrile)(Ph2PPyH)2](CH3SO3)2 (4a) which is stable only at temperatures <0 °C.  相似文献   

17.
Chiral dicationic SEGPHOS-Pd(II) complex achieves a high chemical yield, (E)-olefin selectivity, anti-diastereoselectivity, along with high enantioselectivity even with less reactive mono- and 1,2-disubstituted olefins in this much less reactive ketone-ene reactions. The high levels of enantioselectivity stem from the effective shielding with diphenyl groups on phosphines caused by the narrow dihedral angle of metal complexes with SEGPHOS.  相似文献   

18.
A practical route for the synthesis of new biologically active 5-HT(2 A) receptor antagonists has been developed. In only three catalytic steps, this class of central nervous system (CNS) active compounds can be synthesized efficiently with high diversity. As the initial step, an anti-Markovnikov addition of amines to styrenes provides an easy route to N-(arylalkyl)piperazines, which constitute the core structure of the active molecules. Here, base-catalyzed hydroamination reactions of styrenes with benzylated piperazine proceeded in high yield even at room temperature. After catalytic debenzylation, the free amines were successfully carbonylated with different aromatic and heteroaromatic halides and carbon monoxide to yield the desired compounds in good to excellent yields. The two key reactions, base-catalyzed hydroamination of styrenes and palladium-catalyzed aminocarbonylation of haloarenes/heterocycles, showed tolerance towards various functional groups, thereby demonstrating the potential to synthesize a wide variety of new derivatives of this promising class of pharmaceuticals.  相似文献   

19.
The present work shows the catalytic activity of a series of carbonyl ruthenium complexes in the epoxidation of olefins co‐catalyzed by isobutyl‐aldehyde. The complexes display catalytic activity in the epoxidation of the cyclohexene with high selectivity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号