首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABA triblock copolymers of L ‐lactide (LL) and ε‐caprolactone (CL), designated as PLL‐P(LL‐co‐CL)‐PLL, were synthesized via a two‐step ring‐opening polymerization in bulk using diethylene glycol and stannous octoate as the initiating system. In the first‐step reaction, an approximately 50:50 mol% P(LL‐co‐CL) random copolymer (prepolymer) was prepared as the middle (B) block. This was then chain extended in the second‐step reaction by terminal block polymerization with more L ‐lactide. The percentage yields of the triblock copolymers were in excess of 95%. The prepolymers and triblock copolymers were characterized using a combination of dilute‐solution viscometry, gel permeation chromatography (GPC), 1H‐ and 13C‐NMR, and differential scanning calorimetry (DSC). It was found that the molecular weight of the prepolymer was controlled primarily by the diethylene glycol concentration. All of the triblock copolymers had molecular weights higher than their respective prepolymers. 13C‐NMR analysis confirmed that the prepolymers contained at least some random character and that the triblock copolymers consisted of additional terminal PLL end (A) blocks. From their DSC curves, the triblock copolymers were seen to be semi‐crystalline in morphology. Their glass transition, solid‐state crystallization, and melting temperature ranges, together with their heats of melting, all increased as the PLL end (A) block length increased. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N‐isopropylacrylamide) (PNIPAAm‐b‐PEO‐b‐PNIPAAm) triblock copolymer was synthesized via the reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process with xanthate‐terminated poly(ethylene oxide) (PEO) as the macromolecular chain transfer agent. The successful synthesis of the ABA triblock copolymer inspired the preparation of poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide) (PNIPAAm‐b‐PEO) copolymer networks with N,N′‐methylenebisacrylamide as the crosslinking agent with the similar approach. With the RAFT/MADIX process, PEO chains were successfully blocked into poly(N‐isopropylacrylamide) (PNIPAAm) networks. The unique architecture of PNIPAAm‐b‐PEO networks allows investigating the effect of the blocked PEO chains on the deswelling and reswelling behavior of PNIPAAm hydrogels. It was found that with the inclusion of PEO chains into the PNIPAAm networks as midblocks, the swelling ratios of the hydrogels were significantly enhanced. Furthermore, the PNIPAAm‐b‐PEO hydrogels displayed faster response to the external temperature changes than the control PNIPAAm hydrogel. The accelerated deswelling and reswelling behaviors have been interpreted based on the formation of PEO microdomains in the PNIPAAm networks, which could act as the hydrophilic tunnels to facilitate the diffusion of water molecules in the PNIPAAm networks. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
3(2‐pyridinylmethylene)‐5‐aryl‐2(3H)‐furanones and 3(3‐pyridinylmethylene)‐5‐aryl‐2(3H)‐furanones were prepared as a mixture of (E) and (Z) stereoisomers by condensing pyridine‐2‐carboxaldehyde and pyridine‐3‐carboxaldehyde with 3‐aroylpropionic acids. The reaction of the furanones 6 and 7 with anhydrous aluminium chloride in benzene led to the formation of 4,4‐diaryl‐1‐(2‐pyridinyl)but‐1,3‐diene ( 8 ) and 4,4‐diaryl‐1‐(3‐pyridinyl)but‐1,3‐diene ( 9 ) as mixtures of geometrical (E,E‐ and E,Z‐) stereoisomers via an intermolecular alkylation mode. When the reaction was carried out in tetrachloroethane as a solvent, the reaction of 6 gave 5‐arylquinoline‐7‐carboxylic acid via intramolecular alkylation mode. This may be considered as a novel method for the synthesis of quinoline derivatives. J. Heterocyclic Chem., (2011).  相似文献   

4.
A Pd(dba)2–P(OEt)3 combination allowed the silastannation of arylacetylenes, 1‐hexyne or propargyl alcohols with tributyl(trimethylsilyl)stannane to take place at room temperature, producing (Z)‐2‐silyl‐1‐stannyl‐1‐substituted ethenes in high yields. Novel silyl(stannyl)ethenes were fully characterized by 1H‐, 13C‐, 29Si‐ and 119Sn‐NMR as well as infrared and mass analyses. Treatment of a series of (Z)‐1‐aryl‐2‐silyl‐1‐stannylethenes and (Z)‐1‐(3‐pyridyl)‐2‐silyl‐1‐stannylethene with hydrochloric acid or hydroiodic acid in the presence of tetraethylammonium chloride (TEACl) or tetrabutylammonium iodide (TBAI) led to the exclusive formation of (E)‐trimethyl(2‐arylethenyl)silanes with high stereoselectivity. A similar reaction of (Z)‐1‐(2‐anisyl)‐2‐silyl‐1‐stannylethene also produced E‐type trimethyl[2‐(2‐anisyl)ethenyl]silane, while (Z)‐trimethyl [2‐(2‐pyridyl)ethenyl]silane was produced exclusively from (Z)‐1‐(2‐pyridyl)‐2‐silyl‐1‐stannylethene. Protodestannylation of (Z)‐1‐[hydroxy(phenyl)methyl]‐2‐silyl‐1‐stannylethene with trifluoroacetic acid took place via the β‐elimination of hydroxystannane, providing trimethyl(3‐phenylpropa‐1,2‐dienyl)silane quite easily. The destannylation products were also fully characterized. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Graft copolymers comprising poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA were synthesized using atom transfer radical polymerization (ATRP) for composite nanofiltration (NF) membranes. Direct initiation of the secondary chlorinated site of CTFE units facilitates grafting of PSSA, as revealed by FT‐IR spectroscopy. The successful “grafting from” method and the microphase‐separated structure of the graft copolymer were confirmed by transmission electron microscopy (TEM). Wide angle X‐ray scattering (WAXS) also showed the decrease in the crystallinity of P(VDF‐co‐CTFE) upon graft copolymerization. Composite NF membranes were prepared from P(VDF‐co‐CTFE)‐g‐PSSA as a top layer coated onto P(VDF‐co‐CTFE) ultrafiltration support membrane. Both the rejections and the flux of composite membranes increased with increasing PSSA concentration due to the increase in SO3H groups and membrane hydrophilicity, as supported by contact angle measurement. The rejections of NF membranes containing 47 wt% of PSSA were 83% for Na2SO4 and 28% for NaCl, and the solution flux were 18 and 32 L/m2 hr, respectively, at 0.3 MPa pressure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The primary use of poly(acrylonitrile) (PAN) fibers, commonly referred to as acrylic fibers, is in textile applications like clothing, furniture, carpets, and awnings. All commercially available PAN fibers are processed by solution spinning; however, alternative, more cost‐effective processes like melt spinning are still highly desired. Here, the melt spinning of PAN‐co‐poly(methyl acrylate) (PMA) plasticized with propylene carbonate (PC) at 175°C is reported. The use of methyl acrylate (MA) as comonomer and PC as an external plasticizer renders the approach a combination of internal and external plasticization. Various mixtures of PAN and PC used in this work were examined by rheology, subjected to melt spinning, followed by discontinuous and continuous washing, respectively. The best fibers were derived from a PAN‐co‐PMA copolymer containing 8.1 mol‐% of MA having a number‐average molecular weight M n of 34 000 g/mol, spun in the presence of 22.5 wt.‐% of PC. The resulting fibers were analyzed by scanning electron microscopy and wide‐angle X‐ray scattering (WAXS), and were subjected to mechanical testing.  相似文献   

7.
Reported here is the synthesis, solid‐state characterization, and redox properties of new triangular, threefold symmetric, viologen‐containing macrocycles. Cyclotris(paraquat‐p‐phenylene) ( CTPQT6+ ) and cyclotris(paraquat‐p‐1,4‐dimethoxyphenylene) ( MCTPQT6+ ) were prepared and their X‐ray single‐crystal (super)structures reveal intricate three‐dimensional packing. MCTPQT6+ results in nanometer‐sized channels, in contrast with its parent counterpart CTPQT6+ which crystallizes as a couple of polymorphs in the form of intercalated assemblies. In the solid state, MCTPQT3(.+) exhibits stacks between the 1,4‐dimethoxyphenylene and bipyridinium radical cations, providing new opportunities for the manipulation and control of the recognition motif associated with viologen radical cations. These redox‐active cyclophanes demonstrate that geometry‐matching and weak intermolecular interactions are of paramount importance in dictating the formation of their intricate solid‐state superstructures.  相似文献   

8.
Three coordination polymers, {[Cd(3‐bpd)2(NCS)2]×C2H5OH}n ( 1 ), {[Cd(3‐bpd)(dpe)(NO3)2]×(3‐bpd)}2 ( 2 ), {[Cd(dpe)2(NCS)2]×3‐bpd×2H2O}n ( 3 ) (3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene; dpe = 1,2‐bis(4‐pyridyl)ethane), were prepared and structurally characterized by a single‐crystal X‐ray diffraction method. In compound 1 , each Cd(II) ion is six‐coordinate bonded to six nitrogen atoms from four 3‐bpd and two NCS? ligands. The 3‐bpd acts as a bridging ligand connecting the Cd(II) ion to generate a 2D layered metal‐organic framework (MOF) by using a rhomboidal‐grid as the basic building units with the 44 topology. In compound 2 , the Cd(II) ion is also six‐coordinate bonded to four nitrogen atoms of two 3‐bpd, two dpe and two oxygen atoms of two NO3? ligands. The 3‐bpd and dpe ligands both adopt bis‐monodentate coordination mode connecting the Cd(II) ions to generate a 2D layered MOF by using a rectangle‐grid as the basic building units with the 44 topology. In compound 3 , two crystallographically independent Cd(II) ions are both coordinated by four nitrogen atoms of dpe ligands in the basal plane and two nitrogen atom of NCS? in the axial sites. The dpe acts as a bridging ligand to connect the Cd(II) ions forming a 2D interpenetrating MOFs by using a square‐grid as the basic unit with the 44 topology. All of their 2D layered MOFs in compounds 1 ‐ 3 are then arranged in a parallel non‐interpenetrating ABAB—packing manner in 1 and 2 , and mutually interpenetrating manner in 3 , respectively, to extend their 3D supramolecular architectures with their 1D pores intercalated with solvent (ethanol in 1 or H2O in 3 ) or free 3‐bpd molecules in 2 and 3 , respectively. The photoluminescence measurements of 1 ‐ 3 reveal that the emission is tentatively assigned to originate from π‐π* transition for 1 and 2 and probably due to ligand‐center luminescence for compounds 3 , respectively.  相似文献   

9.
Reversible‐addition fragmentation‐transfer (RAFT) polymerization of acrylonitrile (AN) was performed with 2‐(2‐cyano‐2‐propyl‐dodecyl)trithiocarbonate as RAFT agent and azobis(isobutyronitrile) as initiator. Linear polyacrylonitrile (Mn = 133,000 g/mol, PDI = 1.34) was prepared within 7 h in 86% isolated yield. High‐yield copolymerization with methyl methacrylate (MMA) was performed and copolymerization parameters were determined according to Kelen and Tüdös at 90 °C in ethylene carbonate yielding rAN = 0.2 and rMMA = 0.42. The molecular weights, polydispersity indices (PDIs), and MMA content of the copolymer were adjusted in a way that precursor fibers could be prepared via wet spinning. These precursor fibers had round cross‐sections and a dense morphology, showing tenacities of 40–50 cN/tex and elastic moduli of 900–1000 cN/tex at a fineness of 1 dtex and an elongation of 13–17%. Precursor fibers were oxidatively stabilized and then carbonized at different temperatures. A maximum tensile strength of 2.5 GPa was reached at 1350 °C. Thermal analysis, infrared and Raman spectroscopy, wide‐angle X‐ray scattering, scanning electron microscopy, and tensile testing were used to characterize the resulting carbon fibers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1322–1333  相似文献   

10.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

11.
Peripherally metalated porphyrinoids are promising functional π‐systems displaying characteristic optical, electronic, and catalytic properties. In this work, 5‐(2‐pyridyl)‐ and 5,10,15‐tri(2‐pyridyl)‐BIII‐subporphyrins were prepared and used to produce cyclometalated subporphyrins by reactions with [Cp*IrCl2]2, which proceeded through an efficient C?H activation to give the corresponding mono‐ and tri‐IrIII complexes, respectively. While the mono‐IrIII complex was obtained as a diastereomeric mixture, a C3‐symmetric tri‐IrIII complex with the three Cp*‐units all at the concave side was predominantly obtained in a high yield of 90 %, which displays weak NIR phosphorescence even at room temperature in degassed CH2Cl2, differently from the mono‐IrIII complexes.  相似文献   

12.
A series of novel types of three‐armed poly(trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline)‐block‐poly(ε‐caprolactone) (PHpr‐b‐PCL) copolymers were successfully synthesized via melt block copolymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) and ε‐caprolactone (ε‐CL) with a trifunctional initiator trimethylolpropane (TMP) and stannous octoate (SnOct2) as a catalyst. For the homopolycondensation of N‐CBz‐Hpr with TMP initiator and SnOct2 catalyst, the number‐average molecular weight (Mn) of prepolymer increases from 530 to 3540 g mol?1 with the molar ratio of monomer to initiator (3–30), and the molecular weight distribution (Mw/Mn) is between 1.25 to 1.32. These three‐armed prepolymer PHpr were subsequently block copolymerized with ε‐caprolactone (ε‐CL) in the presence of SnOct2 as a catalyst. The Mn of the copolymer increased from 2240 to 18,840 g mol?1 with the molar ratio (0–60) of ε‐CL to PHpr. These products were characterized by differential scanning calorimetry (DSC), 1H NMR, and gel permeation chromatography. According to DSC, the glass‐transition temperature (Tg) of the three‐armed polymers depended on the molar ratio of monomer/initiator that were added. In vitro degradation of these copolymers was evaluated from weight‐loss measurements and the change of Mn and Mw/Mn. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1708–1717, 2005  相似文献   

13.
(Acetoxymethyl)silanes 2 , 7 a – c , and 10 a – c with at least one alkoxy group, of the general formula (AcOCH2)Si(OR)3?n(CH3)n (R: Me, Et, iPr; n=0, 1, 2), were synthesized from the corresponding (chloromethyl)silanes 1 , 6 a – c , and 9 a – c by treatment with potassium acetate under phase‐transfer‐catalysis conditions. These compounds were found to provide 2,2,5,5‐organo‐substituted 1,4‐dioxa‐2,5‐disilacyclohexanes 3 , 8 a – c , and 11 a – c if treated with organotin(IV) catalysts such as dioctyltin oxide. The reaction proceeds through transesterification of the acetoxy and alkoxy units followed by ring‐closure to form a dimeric six‐membered ring. The corresponding alkyl acetates are formed as the reaction by‐products. With these mild conditions, the method overcomes the drawbacks of previously reported synthetic routes to furnish 2,2,5,5‐tetramethyl‐1,4‐dioxa‐2,5‐disilacyclohexane ( 3 ) and even allows the synthesis of 1,4‐dioxa‐2,5‐disilacyclohexanes bearing hydrolytically labile alkoxy substituents at the silicon atom in good yields and high purity. These new materials were fully characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and X‐ray analysis (trans‐ 8 a ).  相似文献   

14.
A novel class of biomimetic glycopolymer–polypeptide triblock copolymers [poly(L ‐glutamate)–poly(2‐acryloyloxyethyllactoside)–poly(L ‐glutamate)] was synthesized by the sequential atom transfer radical polymerization of a protected lactose‐based glycomonomer and the ring‐opening polymerization of β‐benzyl‐L ‐glutamate N‐carboxyanhydride. Gel permeation chromatography and nuclear magnetic resonance analyses demonstrated that triblock copolymers with defined architectures, controlled molecular weights, and low polydispersities were successfully obtained. Fourier transform infrared spectroscopy of the triblock copolymers revealed that the α‐helix/β‐sheet ratio increased with the poly(benzyl‐L ‐glutamate) block length. Furthermore, the water‐soluble triblock copolymers self‐assembled into lactose‐installed polymeric aggregates; this was investigated with the hydrophobic dye solubilization method and ultraviolet–visible analysis. Notably, this kind of aggregate may be useful as an artificial polyvalent ligand in the investigation of carbohydrate–protein recognition and for the design of site‐specific drug‐delivery systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5754–5765, 2004  相似文献   

15.
With 5,5′‐di(trimethylsilanyl)‐3,3′‐bithiophenyl‐2,2′‐dicarbaldehyde as precusor, 2,7‐di(trimethylsilyl)‐thieno[3,2‐e]benzothiophene was obtained effiently via intramolecular McMurry reaction. At the same time, another two unexpected compounds, 1,2,5,6(5)‐tetra‐(trimethylsilyl)‐1,2,5,6(2,3)‐tetrathiophena‐cyclooctaphan‐3(Z),7(Z)‐diene and 2,7‐di(trimethylsilyl)thieno[3,2‐e]‐benzothiophene‐4‐ol were generated as side products. The crystal structures of all three title compounds are described.  相似文献   

16.
A novel amphiphilic biodegradable triblock copolymer (PGL‐PLA‐PGL) with polylactide (PLA) as hydrophobic middle block and poly(glutamic acid) (PGL) as hydrophilic lateral blocks was successfully synthesized by ring‐opening polymerization (ROP) of L ‐lactide (LA) and N‐carboxy anhydride (NCA) consecutively and by subsequent catalytic hydrogenation. The results of cell experiment of PGL‐PLA‐PGL suggested that PGL could improve biocompatibility of polyester obviously. The copolymer could form micelles of spindly shape easily in aqueous solution. The pendant carboxyl groups of the triblock copolymer were further activated with N‐hydroxysuccinimide and combined with a cell‐adhesive peptide GRGDSY. Incorporation of the oligopeptide further enhanced the hydrophilicity and led to formation of spherical micelles. PGL‐PLA‐PGL showed better cell adhesion and spreading ability than pure PLA and the GRGDSY‐containing copolymer exhibited even further improvement in cell adhesion and spreading ability, indicating that the copolymer could find a promising application in drug delivery or tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3218–3230, 2007  相似文献   

17.
A novel methacrylate monomer bearing 5,10,15,20‐tetraphenylporphyrinato palladium(II) (PdTPP) (monomer 1a ) was synthesized and copolymerized with isobutyl methacrylate (IBM) and 2,2,2‐trifluoroethyl methacrylate (TFEM) to give poly (IBM‐co‐TFEM) bearing PdTPP (copolymer 2a ) as a dye‐conjugated oxygen‐permeable polymer for pressure‐sensitive paint applications. The introduction of PdTPP into copolymer 2a was confirmed by UV–vis spectroscopy and extended X‐ray absorption fine structure analysis. The Stern–Volmer plots of the copolymer 2a and a mixture of PdTPP and poly(IBM‐co‐TFEM) both showed downward curvature, unlike that of the platinum complex analogue (copolymer 2b ) previously reported. The plots were successfully fitted with a two‐site model to give two distinct Stern–Volmer constants (KSV1 and KSV2) and the partition ratio f1. Interestingly, the f1 values for the copolymer 2a were almost constant at about 0.98, whereas those of the mixture of PdTPP and poly(IBM‐co‐TFEM) increased from 0.889 to 0.967 as the temperature was increased. This finding suggests that there are two distinct microheterogeneities, one temperature‐dependent and the other temperature‐independent, in the mixture of PdTPP and poly(IBM‐co‐TFEM). The dye‐conjugation approach effectively eliminates the temperature‐dependent, but not the temperature‐independent microheterogeneity. The luminescence decays of copolymers 2a and 2b and the corresponding mixtures in the absence of oxygen indicated that the temperature‐dependent microheterogeneity involves an oxygen diffusion process, whereas the temperature‐independent one appears to be inherent nature in PdTPP. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 663–670, 2010  相似文献   

18.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

19.
Ultrafine fibers of a laboratory‐synthesized new biodegradable poly(p‐dioxanone‐co‐L ‐lactide)‐block‐poly(ethylene glycol) copolymer were electrospun from solution and collected as a nonwoven mat. The structure and morphology of the electrospun membrane were investigated by scanning electron microscopy, differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and a mercury porosimeter. Solutions of the copolymer, ranging in the lactide fraction from 60 to 80 mol % in copolymer composition, were readily electrospun at room temperature from solutions up to 20 wt % in methylene chloride. We demonstrate the ability to control the fiber diameter of the copolymer as a function of solution concentration with dimethylformamide as a cosolvent. DSC and WAXD results showed the relatively poor crystallinity of the electrospun copolymer fiber. Electrospun copolymer membrane was applied for the hydrolytic degradation in phosphate buffer solution (pH = 7.5) at 37 °C. Preliminary results of the hydrolytic degradation demonstrated the degradation rate of the electrospun membrane was slower than that of the corresponding copolymers of cast film. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1955–1964, 2003  相似文献   

20.
Four novel metal complexes of 4,6‐bis (4‐chlorophenyl)‐2‐amino‐1,2‐dihydropyridine‐3‐carbinitrile (H2L) with Zn(II), Zr(IV), Ce(IV) and U(VI) were synthesized. The structure was elucidated using elemental analysis, melting point, molar conductivity; spectroscopic techniques (IR, 1H NMR, UV–Vis., mass spectra) as well as thermo gravimetric analysis. The spectroscopic data proved that H2L chelated with the metal ions as a bidentate ligand through Namino and Ncarbinitrile atoms. The molecular structure of the complexes was determined using density functional theory (DFT). The central metal ion in each complex is six‐coordinate and the angles around it vary from 62.74° to 166.46°; these values agree with distorted octahedral geometry. The calculated total energy of the complexes found in the region – 406.342 to ?459.717 au and the dipole moment change from 4.675 to 13.171D. The antibacterial and antifungal activities of the ligand, metal salts and complexes were estimated on some microorganisms. The complexes showed significant antibacterial profile in comparison to the free ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号