首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A series of new titanium(IV) complexes with o‐metalated arylimine and/or cis‐9,10‐dihydrophenanthrenediamide ligands, [o‐C6H4(CH?NR)TiCl3] (R=2,6‐iPr2C6H3 ( 3 a ), 2,6‐Me2C6H3 ( 3 b ), tBu ( 3 c )), [cis‐9,10‐PhenH2(NR)2TiCl2] (PhenH2=9,10‐dihydrophenanthrene; R=2,6‐iPr2C6H3 ( 4 a ), 2,6‐Me2C6H3 ( 4 b ), tBu ( 4 c )), [{cis‐9,10‐PhenH2(NR)2}{o‐C6H4(HC?NR)}TiCl] (R=2,6‐iPr2C6H3 ( 5 a ), 2,6‐Me2C6H3 ( 5 b ), tBu ( 5 c )), have been synthesised from the reactions of TiCl4 with o‐C6H4(CH?NR)Li (R=2,6‐iPr2C6H3, 2,6‐Me2C6H3, tBu). Complexes 4 and 5 were formed unexpectedly from the reactions of TiCl4 with two or three equivalents of the corresponding o‐C6H4(CH?NR)Li followed by sequential intramolecular C? C bond‐forming reductive elimination and oxidative coupling reactions. Attempts to isolate the intermediates, [{o‐C6H4(CH?NR)}2TiCl2] ( 2 ), were unsuccessful. All complexes were characterised by 1H and 13C NMR spectroscopy, and the molecular structures of 3 a , 4 a – c , 5 a , and 5 c were determined by X‐ray crystallography.  相似文献   

2.
Two nickel(II) complexes (A and B) bearing β-iminoamine ligands, [2-(ArNCH)-C6H4-NMe2] (La, Ar = 2,6-i-Pr2C6H3; Lb, Ar = 2,6-Me2C6H3), were synthesized and characterized by elemental analyses and 1H NMR. X-ray crystal structure of complex B reveals that the six-membered chelate ring adopts a envelope conformation, with nickel(II) atom deviating from the plane of backbone aromatic ring by 1.164 Å. In the presence of methylaluminoxane (MAO), both complexes showed moderate activities of 105 g molNi−1 h−1 for norbornene polymerization. β-iminoamine Ni(II)/MAO catalysts gave unimodal polymers (Mw, 3.16-8.02 × 10g/mol) with a relatively narrow MWD (Mw/Mn, 1.59-2.14), indicative of single-site catalyst behavior. The obtained polymers are vinyl-type polynorbornenes (PNBs), which are soluble in common solvents such as toluene, cyclohexane and dichlorobenzene.  相似文献   

3.
Norbornene polymerizations were carried out using nickel(II) bromide complexes CH{C(R)NAr}2NiBr ( 1 , R = CH3, Ar = 2, 6 ? iPr2C6H3; 2 , R = CH3, Ar = 2, 6‐Me2C6H3; 3 , R = CF3, Ar = 2, 6 ? iPr2C6H3; 4 , R = CF3, Ar = 2, 6‐Me2C6H3) in the presence of methylaluminoxane. Compound 3 is the most active norbornene polymerization catalyst of all the nickel complexes tested. The activity of theses catalysts increases with increases in steric bulk of the substituents on the aryl rings. The electronic nature of the ligand backbone also affects the activity. The resulting polynorbornenes are vinyl type by IR and NMR analyses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Polymerization of styrene using β‐diketiminate nickel (II) bromide complexes CH{C(R)NAr}2NiBr (R = CH3, Ar = 2,6‐iPr2C6H3, 1 ; R = CH3, Ar = 2,6‐Me2C6H3, 2 ; R = CF3, Ar = 2,6‐iPr2C6H3, 3 ; R = CF3, Ar = 2,6‐Me2C6H3, 4 ) in the presence of methylaluminoxane was studied. Compound 3 is the most active styrene polymerization catalyst of all the nickel complexes tested. The activity of these catalysts increases with increases in steric bulk of the substituents on the aryl rings. The electronic nature of the ligand backbone also affects the activity. Weight‐average molecular weight of the prepared polystyrene ranges from 21 000 to 72 000, with polydispersity indexes of 1.95–2.78. The microstructure of the obtained products is atactic polystyrenes from NMR analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Two nickel(II) complexes of {2‐[C3HN2(R1)2‐3,5]}[C(R2)?N(C6H3iPr2‐2,6)]NiBr2 (complex 1 : R1 = CH3, R2 = 2,4,6‐trimethylphenyl; complex 2 : R1 = R2 = Ph) were synthesized and characterized. The solid‐state structure of complex 1 has been confirmed by X‐ray single‐crystal analysis. Activated by methylaluminoxane (MAO), complexes 1 and 2 are capable of catalyzing the polymerization of norbornene with moderate activities [up to 10.56 × 105 gPNBE (mol Ni h)?1] with high molecular weights (Mw?13.56 × 105 g mol?1) and molecular weight distributions were around 2. The influences of polymerization parameters such as reaction temperature and Al–Ni molar ratio on catalytic activity and molecular weight of the polynorbornene were investigated in detail. The obtained polynorbornenes were characterized by means of 1H‐NMR and FTIR techniques. The analytical results of polymer structures indicated that the norbornene polymerization is vinyl‐type polymerization rather than ROMP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A series of new indanimine ligands [ArN?CC2H3(CH3)C6H2(R)OH] (Ar = Ph, R = Me ( 1 ), R = H ( 2 ), and R = Cl ( 3 ); Ar = 2,6‐i‐Pr2C6H3, R = Me ( 4 ), R = H ( 5 ), and R = Cl ( 6 )) were synthesized and characterized. Reaction of indanimines with Ni(OAc)2·4H2O results in the formation of the trinuclear hexa(indaniminato)tri (nickel(II)) complexes Ni3[ArN = CC2H3(CH3)C6H2(R)O]6 (Ar = Ph, R = Me ( 7 ), R = H ( 8 ), and R = Cl ( 9 )) and the mononuclear bis(indaniminato)nickel (II) complexes Ni[ArN?CC2H3(CH3)C6H2(R)O]2 (Ar = 2,6‐i‐Pr2C6H3, R = Me ( 10 ), R = H ( 11 ), and R = Cl ( 12 )). All nickel complexes were characterized by their IR, NMR spectra, and elemental analyses. In addition, X‐ray structure analyses were performed for complexes 7 , 10 , 11 , and 12 . After being activated with methylaluminoxane (MAO), these nickel(II) complexes can polymerize norbornene to produce addition‐type polynorbornene (PNB) with high molecular weight Mv (106 g mol?1), highly catalytic activities up to 2.18 × 107 gPNB mol?1 Ni h?1. Catalytic activities and the molecular weight of PNB have been investigated for various reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 489–500, 2008  相似文献   

7.
Norbornene polymerizations proceeded in toluene with bis(β‐ketoamino)nickel(II) {Ni[CH3C(O)CHC(NR)CH3]2 [R = phenyl ( 1 ) or naphthyl ( 2 )]} complexes as the catalyst precursors and the organo‐Lewis compound tris(pentafluorophenyl)borane [B(C6F5)3] as a unique cocatalyst. The polymerization conditions, such as the cocatalyst/catalyst ratio (B/Ni), catalyst concentration, monomer/catalyst ratio (norbornene/Ni), polymerization temperature, and polymerization time, were studied in detail. Both bis(β‐ketoamino)nickel(II)/B(C6F5)3 catalytic systems showed noticeably high conversions and activities. The polymerization activities were up to 3.64 × 107 g of polymer/mol of Ni h for complex 1 /(B(C6F5)3 and 3.80 × 107 g of polymer/mol of Ni h for complex 2 /B(C6F5)3, and very high conversions of 90–95% were maintained; both polymerizations provided high‐molecular‐weight polynorbornenes with molecular weight distributions (weight‐average molecular weight/number‐average molecular weight) of 2.5–3.0. The achieved polynorbornenes were confirmed to be vinyl‐addition and atactic polymers through the analysis of Fourier transform infrared, 1H NMR, and 13C NMR spectra, and the thermogravimetric analysis results showed that the polynorbornenes exhibited good thermal stability (decomposition temperature > 410 °C). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4733–4743, 2007  相似文献   

8.
A series of 8‐(2,6‐dibenzhydryl‐4‐R‐phenylimino)‐5,6,7‐trihydroquinoline ligands have been prepared in which the nature of 4‐R substitutions vary from electron withdrawing to electron donating. The treatment with NiCl2.6H2O or (DME)NiBr2 afforded the corresponding complexes of nickel chloride (4‐R = Me Ni1 , Et Ni2 , tBu Ni3 , CHPh2 Ni4 , Cl Ni5 , and F Ni6 ) and nickel bromide (4‐R = Me Ni7 , Et Ni8 , tBu Ni9 , CHPh2 Ni10 , Cl Ni11 , and F Ni12 ). X‐ray diffraction study of complexes Ni3 , Ni6 , and Ni10 , revealed that Ni3.1/2H2O and Ni6.H2O adopted unsymmetrical and symmetrical chloride‐bridged dinuclear structures respectively, while Ni10.H2O is found as mononuclear specie forming distorted‐square planer geometry. In the presence of either diethylaluminum chloride (Et2AlCl) or modified methylaluminoxane (MMAO), all the nickel complexes ( Ni1–Ni12 ) displayed high activities (up to 1.91 × 106 g(PE) mol (Ni)−1h−1. Highly branched polyethylene waxes with low molecular weights (Mw ≤ 2.6 kg/mol) and narrow molecular weights distributions (Mw/Mn ≤ 1.96) incorporated with vinylene and vinyl groups were obtained. The effects of 4‐R substitutions to the nickel chloride and bromide pre‐catalysts and reaction conditions on the catalytic performance and the properties of the resulting polyethylene were the subject of a detail investigation. The positive influences of using electron‐withdrawing 4‐R substitutions and bromides were observed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1269–1281  相似文献   

9.
Ruthenium(II) complexes containing the tetradentate ligand bis[4(4′‐methyl‐2,2′‐bipyridyl)]‐1,n‐alkane (“bbn”; n=10 and 12) have been synthesised and their geometric isomers separated. All [Ru(phen)(bbn)]2+ (phen=1,10‐phenanthroline) complexes exhibited excellent activity against Gram‐positive bacteria, but only the cis‐α‐[Ru(phen)(bb12)]2+ species showed good activity against Gram‐negative species. In particular, the cis‐α‐[Ru(phen)(bb12)]2+ complex was two to four times more active than the cis‐β‐[Ru(phen)(bb12)]2+ complex against the Gram‐negative strains. The cis‐α‐ and cis‐β‐[Ru(phen)(bb12)]2+ complexes readily accumulated in the bacteria but, significantly, showed the highest level of uptake in Pseudomonas aeruginosa. Furthermore, the accumulation of the cis‐α‐ and cis‐β‐[Ru(phen)(bb12)]2+ complexes in P. aeruginosa was considerably greater than in Escherichia coli. The uptake of the cis‐α‐[Ru(phen)(bb12)]2+ complex into live P. aeruginosa was confirmed by using fluorescence microscopy. The water/octanol partition coefficients (log P) were determined to gain understanding of the relative cellular uptake. The cis‐α‐ and cis‐β‐[Ru(phen)(bbn)]2+ complexes exhibited relatively strong binding to DNA (Kb≈106 M ?1), but no significant difference between the geometric isomers was observed.  相似文献   

10.
A series of para‐phenyl‐substituted α‐diimine nickel complexes, [(2,6‐R2‐4‐PhC6H2N═C(Me))2]NiBr2 (R = iPr ( 1 ); R = Et ( 2 ); R = Me ( 3 ); R = H ( 4 )), were synthesized and characterized. These complexes with systematically varied ligand sterics were used as precatalysts for ethylene polymerization in combination with methylaluminoxane. The results indicated the possibility of catalytic activity, molecular weight and polymer microstructure control through catalyst structures and polymerization temperature. Interestingly, it is possible to tune the catalytic activities ((0.30–2.56) × 106 g (mol Ni·h)?1), polymer molecular weights (Mn = (2.1–28.6) × 104 g mol?1) and branching densities (71–143/1000 C) over a very wide range. The polyethylene branching densities decreased with increasing bulkiness of ligand and decreasing polymerization temperature. Specifically, methyl‐substituted complex 3 showed high activities and produced highly branched amorphous polyethylene (up to 143 branches per 1000 C).  相似文献   

11.
Two novel nickel (II) complexes, CH{C(CF3)NAr}2NiBr ( 1 , Ar = 2,6‐iPr2C6H3 and 2 , 2,6‐Me2C6H3), were synthesized by the reaction of the lithium salt of fluorinated β‐diketiminate backbone ligands with (1,2‐dimethoxyethane) nickel (II) bromide [(DME)NiBr2]. The solid‐state structure of nickel (II) complex 2 as a dimer reveals four‐coordination and a tetrahedral geometry with bromide bridged by single crystal X‐ray measurement. Both complexes catalyze simultaneous polymerization and oligomerization of ethylene when activated by methylaluminoxane (MAO). It was found that the reaction temperature has a pronounced effect on the activity of ethylene polymerization and the molecular weight of obtained polyethylene. In addition, the nickel catalytic systems predominantly produce linear polyethylene with unsaturated end groups. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Oxidative addition of 2‐phenylethylbromide (PhCH2CH2Br) to dimethylplatinum(II) complexes [PtMe2(NN)] ( 1a , NN = 2,2′‐bipyridine (bpy); 1b , NN = 1,10‐phenanthroline (phen)) afforded the new organoplatinum(IV) complexes [PtMe2(Br)(PhCH2CH2)(bpy)], as a mixture of trans ( 2a ) and cis ( 3a ) isomers, and [PtMe2(Br)(PhCH2CH2)(phen)], as a mixture of trans ( 2b ) and cis ( 3b ) isomers, respectively. The new Pt(IV) complexes were readily characterized using multinuclear (1H and 13C) NMR spectroscopy and elemental microanalysis. The crystal structure of 2a was further determined using X‐ray crystallography indicating an octahedral geometry around the platinum centre. A comparison of reactivity of RCH2Br reagents (R = CH3, Ph or PhCH2) in their oxidative addition reactions with complex 1a , with an emphasis on the effects of the R groups of alkyl halides, was also conducted using density functional theory.  相似文献   

13.
A series of 1‐(2,6‐dibenzhydryl‐4‐fluorophenylimino)‐ 2‐aryliminoacenaphthylene derivatives ( L1–L5 ) and their halonickel complexes LNiX2 (X = Br, Ni1–Ni5 ; X = Cl, Ni6–Ni10 ) are synthesized and well characterized. The molecular structures of representative complexes Ni2 and Ni4 are confirmed as the distorted tetrahedron geometry around nickel atom by the single crystal X‐ray diffraction. Upon activation with methylaluminoxane, all nickel complexes show high activities up to 1.49 × 107 g of PE (mol of Ni)?1 h?1 toward ethylene polymerization, producing polyethylenes with high branches and molecular weights up to 1.62 × 106 g mol?1 as well as narrow polydispersity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1369–1378  相似文献   

14.
Five examples of unsymmetrical 1,2‐bis (arylimino) acenaphthene ( L1 – L5 ), each containing one N‐2,4‐bis (dibenzocycloheptyl)‐6‐methylphenyl group and one sterically and electronically variable N‐aryl group, have been used to prepare the N,N′‐nickel (II) halide complexes, [1‐[2,4‐{(C15H13}2–6‐MeC6H2N]‐2‐(ArN)C2C10H6]NiX2 (X = Br: Ar = 2,6‐Me2C6H3 Ni1 , 2,6‐Et2C6H3 Ni2 , 2,6‐i‐Pr2C6H3 Ni3 , 2,4,6‐Me3C6H2 Ni4 , 2,6‐Et2–4‐MeC6H2 Ni5 ) and (X = Cl: Ar = 2,6‐Me2C6H3 Ni6 , 2,6‐Et2C6H3 Ni7 , 2,6‐i‐Pr2C6H3 Ni8 , 2,4,6‐Me3C6H2 Ni9 , 2,6‐Et2–4‐MeC6H2 Ni10 ), in high yield. The molecular structures Ni3 and Ni7 highlight the extensive steric protection imparted by the ortho‐dibenzocycloheptyl group and the distorted tetrahedral geometry conferred to the nickel center. On activation with either Et2AlCl or MAO, Ni1 – Ni10 exhibited very high activities for ethylene polymerization with the least bulky Ni1 the most active (up to 1.06  ×  107 g PE mol?1(Ni) h?1 with MAO). Notably, these sterically bulky catalysts have a propensity towards generating very high molecular weight polyethylene with moderate levels of branching and narrow dispersities with the most hindered Ni3 and Ni8 affording ultra‐high molecular weight material (up to 1.5  ×  106 g mol?1). Indeed, both the activity and molecular weights of the resulting polyethylene are among the highest to be reported for this class of unsymmetrical 1,2‐bis (imino)acenaphthene‐nickel catalyst.  相似文献   

15.
Reactions of 2,5‐dibromothiophene, 1 , with [Pd2(dba)3]?dba [Pd(dba)2; dba = dibenzylideneacetone] in the presence of N‐donor ligands such as 2,2′‐bipyridine (bpy) and 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (dtbbpy) give arylpalladium complexes of cis‐[2‐(5‐BrC4H2S)PdBrL2], 2a, b [L2 = bpy ( 2a ), L2 = dtbbpy ( 2b )], and cis‐cis‐L2PdBr[2,5‐(C4H2S‐)PdBr(L2)], 3a, b [L2 = bpy ( 3a ), L2 = dtbbpy ( 3b )]. Treatment of cis complexes 2a, b and 3a, b with CO causes the insertion of CO into the Pd? C bond to give the aroyl derivatives of palladium complexes of cis‐[2‐(5‐BrC4H2S)COPdBrL2], 4a, b [L2 = bpy ( 4a ), L2 = dtbbpy ( 4b )], and cis‐cis‐[(L2)(CO)BrPdC4H2S‐PdBr(CO)(L2)], 5a, b [L2 = bpy ( 5a ) and L2 = dtbbpy ( 5b )], respectively. Treating complexes 2a, b with 1 mole equivalent of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) gave iminoacyl complexes cis‐[2‐(5‐BrC4H2S)C?NXyPdBrL2], 6a, b [L2 = bpy ( 6a ), L2 = dtbbpy ( 6b )], and a 3‐fold excess of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) gave triiminoacyl complexes [2‐(5‐BrC4H2S)(C?NXy)3 PdBr], 7 . Cyclization reactions of 6a, b with 3 mole equivalents of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) or cyclization reaction of 7 with 1 mole equivalent of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) both gave tetraiminoacyl complexes of [2‐(5‐BrC4H2S)(C?NXy)4PdBr], 8 , which was also obtained by the reaction of 1 or 2a, b with a 4‐fold excess of isocyanide XyNC with or without add Pd(dba)2. Similarly, complexes 3a and b were also reacted with 2 mole equivalents of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) to give iminoacyl complexes cis‐cis‐[(L2)(CNXy)BrPdC4H2S‐PdBr(CNXy)(L2)], 10a, b [L2 = bpy ( 10a ), L2 = dtbbpy ( 10b )] and an 8‐fold excess of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) afforded tetraiminoacyl complexes of [2,5‐(C4H2S)(C?NXy)8Pd2Br2], 11 . Complexes 2a, b and 3a, b reacted with TlOTf [(TfO = CF3SO3)] in CH2Cl2 to give 9a, b and 12a, b , respectively, in a moderate yield. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The P,O‐chelated shell higher olefin process (SHOP) type nickel complexes are practical homogeneous catalysts for the industrial preparation of linear low‐carbon α‐olefins from ethylene. We describes that a facile synthetic route enables the modulation of steric hindrance and electronic nature of SHOP‐type nickel complexes. A series of sterically bulky SHOP‐type nickel complexes with variable electronic nature, {[4‐R‐C6H4C(O) = C‐PArPh]NiPh (PPh3); Ar = 2‐[2′,6′‐(OMe)2C6H3]C6H4; R = H ( Ni1 ); R = OMe ( Ni2 ); R = CF3 ( Ni3 )}, were prepared and used as single component catalysts toward ethylene polymerization without using any phosphine scavenger. These nickel catalysts exhibit high thermal stability during ethylene polymerization and result in highly crystalline linear α‐olefinic solid polymer. The catalytic performance of the SHOP‐type nickel complexes was significantly improved by introducing a bulky ortho‐biphenyl group on the phosphorous atom or an electron‐withdrawing trifluoromethyl on the backbone of the ligand, indicating steric and electronic effects play critical roles in SHOP‐type nickel complexes catalyzed ethylene polymerization.  相似文献   

17.
5‐Coordinated methoxybenzylidene complexes M(=NAr)(=CH?C6H4?o‐OMe)(OtBuF3)2 (Ar=2,6‐iPr2C6H3; tBuF3=CMe2(CF3)) of Mo ( 1mMo ) and W ( 1mW ) were synthesized by cross‐metathesis from the corresponding neophylidene/neopentylidene precursors and o‐methoxystyrene. 1mMo and 1mW were grafted onto the surface of silica partially dehydroxylated at 700 °C to give well‐defined silica‐supported alkylidenes (≡SiO)M(=NAr)(=CH?C6H4?o‐OMe)(OtBuF3) (M=Mo ( 1Mo ), W ( 1W )). Supported methoxybenzylidene complexes were tested in metathesis of cis‐4‐nonene, 1‐nonene, and ethyl oleate, and compared to their molecular precursors and supported classical analogs (≡SiO)M(=NAr)(=CHCMe2R)(OtBuF3) (M=Mo, R=Ph ( 2Mo ), M=W, R=Me ( 2W )). Both grafted complexes 1Mo and 1W show significantly better performance as compared to their molecular precursors 1mMo and 1mW but are less efficient than the classical 4‐coordinated alkylidenes 2Mo and 2W . Noteworthy, both 1Mo and 1W can reach equilibrium conversion in metathesis of cis‐4‐nonene at catalyst loadings as low as 50 ppm.  相似文献   

18.
A new imidazolinium ligand precursor [L2H]Cl ( 2 ) was prepared in 86 % yield. Compared with its imidazolium counterpart, [L1H]Cl ( 1 ), 2 is very sensitive to moisture and can undergo ring‐opening reactions very readily. Palladium complexes with the ring‐opened products from imidazolinium salts were isolated and characterized by X‐ray crystallography. Theoretical studies confirmed that the imidazolinium salt has a higher propensity for the ring‐opening reaction than the imidazolium counterpart. New mixed phosphine/carbene palladium complexes, cis‐[PdCl2(L)(PR3)] (L=L1 and L2; R=Ph, Cy), were successfully prepared. These complexes are highly robust as revealed by variable‐temperature NMR spectroscopic studies and thermal gravimetric analysis. The structural and electronic properties of the new complexes on varying the carbene group (imidazol‐2‐ylidene group (unsaturated carbene) vs. imidazolin‐2‐ylidene (saturated carbene)) and the phosphine group (PPh3 vs. PCy3) were studied in detail by X‐ray crystallography, X‐ray photoelectron spectroscopy, and theoretical calculations. The catalytic study reveals that cis‐[PdCl2(L2)(PCy3)] is a competent PdII precatalyst for Suzuki coupling reactions, in which unreactive aryl chlorides can be applied as substrates.  相似文献   

19.
The syntheses of the transition metal complexes cis‐[(4‐tBu‐2,6‐{P(O)(OiPr)2}2C6H2SnCl)2MX2] ( 1 , M=Pd, X=Cl; 2 , M=Pd, X=Br; 3 , M=Pd, X=I; 4 , M=Pt, X=Cl), cis‐[{2,6‐(Me2NCH2)2C6H3SnCl}2MX2] ( 5 , M=Pd, X=I; 6 , M=Pt, X=Cl), trans‐[{2,6‐(Me2NCH2)2C6H3SnI}2PtI2] ( 7 ) and trans‐[(4‐tBu‐2,6‐{P(O)(OiPr)2}2 C6H2SnCl)PdI2]2 ( 8 ) are reported. Also reported is the serendipitous formation of the unprecedented complexes trans‐[(4‐tBu‐2,6‐{P(O)(OiPr)2}2C6H2SnCl)2 Pt(SnCl3)2] ( 10 ) and [(4‐tBu‐2,6‐{P(O) (OiPr)2}2C6H2SnCl)3Pt(SnCl3)2] ( 11 ). The compounds were characterised by elemental analyses, 1H, 13C, 31P, 119Sn and 195Pt NMR spectroscopy, single‐crystal X‐ray diffraction analysis, UV/Vis spectroscopy and, in the cases of compounds 1 , 3 and 4 , also by Mössbauer spectroscopy. All the compounds show the tin atoms in a distorted trigonal‐bipyramidal environment. The Mössbauer spectra suggest the tin atoms to be present in the oxidation state III. The kinetic lability of the complexes was studied by redistribution reactions between compounds 1 and 3 as well as between 1 and cis‐[{2,6‐(Me2NCH2)2C6H3SnCl}2PdCl2]. DFT calculations provided insights into both the bonding situation of the compounds and the energy difference between the cis and trans isomers. The latter is influenced by the donor strength of the pincer‐type ligands.  相似文献   

20.
Novel nickel(II) bisbenzimidazole complexes were prepared via a three‐step synthetic procedure consisting of aniline/diacid condensation, ligand N‐alkylation, and metal complexation. The complexes were characterized by X‐ray crystallography and found to possess a pseudotetrahedral geometry. Upon activation with methylaluminoxane, these nickel bisbenzimidazoles did not polymerize simple olefins (e.g., ethylene, propylene, and 1‐butene) but were found to carry out the rapid and efficient polymerization of norbornene. The polynorbornene products were characterized by gel permeation chromatography/light scattering, 13C NMR, and IR, and their Mark–Houwink and dn/dc parameters were determined. The molecular weights of the polynorbornenes were very high (weight‐average molecular weight = 587,000–797,000 g/mol). 13C NMR suggested that the polymerization occurred via vinyl addition (i.e., a 2,3‐linked polymer); no ring‐opened product was observed. Thermogravimetric analysis indicated that the polynorbornenes were stable up to 400 °C under nitrogen. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2095–2106, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号