首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C?O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.  相似文献   

2.
A conceptually new and synthetically valuable cross‐dehydrogenative benzylic C(sp3)–H amination reaction is reported by visible‐light photoredox catalysis. This protocol employs DCA (9,10‐dicyanoanthracene) as a visible‐light‐absorbing photoredox catalyst and an amide as the nitrogen source without the need of either a transition metal or an external oxidant.  相似文献   

3.
Nitrimines are employed as powerful reagents for metal‐free formal C(sp2)–C(sp2) cross‐coupling reactions. The new chemical process is tolerant of a wide array of nitrimine and heterocyclic coupling partners giving rise to the corresponding di‐ or trisubstituted alkenes, typically in high yield and with high stereoselectivity. This method is ideal for the metal‐free construction of heterocycle‐containing drug targets, such as phenprocoumon.  相似文献   

4.
Nickel can be used to promote oxidative C(sp2)?H/C(sp2)?H cross‐coupling between two heteroarenes. The reaction scope can be extended to aromatic carboxamides as the coupling partner. The reaction exhibits high functional‐group compatibility and broad substrate scope. The silver oxidant can be recycled to reduce costs and waste, which is very useful for practical applications.  相似文献   

5.
Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross‐coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal‐catalyzed cross‐coupling reactions.

  相似文献   


6.
Direct access to complex, enantiopure benzylamine architectures using a synergistic iridium photoredox/nickel cross‐coupling dual catalysis strategy has been developed. New C(sp3)? C(sp2) bonds are forged starting from abundant and inexpensive natural amino acids.  相似文献   

7.
A study involving the relatively rare combination of heterogeneous catalysis conducted under microwave conditions is presented. Carbon–carbon bond formation, including Negishi and Suzuki couplings, can be quickly effected with aryl chloride partners by using a base metal (nickel) adsorbed in the pores of activated charcoal. Aminations were also studied, along with cross‐couplings of vinyl alanes with benzylic chlorides as a means to stereodefined allylated aromatics. Reaction times for all these processes are typically reduced from several hours to minutes in a microwave reactor.  相似文献   

8.
A novel method for the synthesis of non‐natural L ‐ and D ‐amino acids by a Ni‐catalyzed reductive cross‐coupling reaction is described. This strategy enables the racemization‐free cross‐coupling of serine/homoserine‐ derived iodides with aryl/acyl/alkyl halides. It provides convenient access to varieties of enantiopure and functionalized amino acids, which are important building blocks in bioactive compounds and pharmaceuticals.  相似文献   

9.
Aryl–alkyl cross‐coupling products are obtained by the iron‐catalyzed oxidative heterocoupling of organozinc reagents under mild conditions. This novel reaction pathway is versatile, allowing for the use of primary and secondary aliphatic diorganozinc reagents as coupling partners as well as tolerating functionalized aryl‐ and alkylzinc reagents.

  相似文献   


10.
We report herein a new method for the photoredox activation of boronic esters. Using these reagents, an efficient and high‐throughput continuous flow process was developed to perform a dual iridium‐ and nickel‐catalyzed C(sp2)–C(sp3) coupling by circumventing solubility issues associated with potassium trifluoroborate salts. Formation of an adduct with a pyridine‐derived Lewis base was found to be essential for the photoredox activation of the boronic esters. Based on these results we were able to develop a further simplified visible light mediated C(sp2)–C(sp3) coupling method using boronic esters and cyano heteroarenes under flow conditions.  相似文献   

11.
Recently, the development of more sustainable catalytic systems based on abundant first‐row metals, especially nickel, for cross‐coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a NiIII–alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon–carbon cross‐coupling system based on a two‐coordinate NiII–bis(amido) complex in which a NiIII–alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this NiIII–alkyl species as well as those of other key NiI and NiII intermediates. The catalytic cycle described herein is also one of the first examples of a two‐coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first‐row transition metals to accommodate two‐coordinate complexes.  相似文献   

12.
13.
A palladium‐catalyzed intermolecular decarboxylative C(sp3)–C(sp) coupling of diarylmethyl carbonates and terminal alkynes has been developed. The reaction proceeds smoothly under external base‐free conditions to deliver the corresponding alkynylated diarylmethanes with the liberation of CO2 and MeOH as the sole byproducts. Moreover, enantioenriched diarylmethyl carbonates are stereospecifically converted to optically active cross‐coupling products with inversion of configuration. Thus, the stereospecific palladium catalysis can provide new and unique access to the alkynylated chiral tertiary stereocenters, which are relatively difficult to construct by conventional methods.  相似文献   

14.
An asymmetric organocatalytic direct C? H/C? H oxidative coupling reaction of N1,N3‐diphenylmalonamides has been well established by using chiral organoiodine compounds as catalysts, wherein four C? H bonds were stereoselectively functionalized to give structurally diverse spirooxindoles with high levels of enantioselectivity. More importantly, the findings indicated that chiral hypervalent organoiodine reagents can serve as alternative catalysts for the creation of enantioselective functionalization of inactive C? H bonds.  相似文献   

15.
16.
Double Heck cross‐coupling reactions of 2,3‐ and 3,5‐dibromopyridine with various alkenes afforded the corresponding novel di(alkenyl)pyridines. The Heck reaction of 2,5‐dibromopyridine unexpectedly afforded 5,5′‐di(alkenyl)‐2,2′‐bipyridines by palladium‐catalyzed dimerization to give 5,5′‐dibromo‐2,2′‐bipyridine and subsequent twofold Heck reaction.  相似文献   

17.
Copper‐catalyzed Sonogashira‐type reactions were dramatically accelerated by introducing a catalytic amount of polycyclic aromatic hydrocarbon additive. This novel catalytic system features low copper loading (0.5 mol% < Cu < 5 mol%), broad reaction scope and remarkable substrate tolerance. Both aromatic and aliphatic terminal alkynes as well as diverse aryl iodides were employed in this transformation, affording respectable yields of the desired products. The novel Cu(OTf)2/pyrene system was subsequently employed to synthesize phenylacetylene‐based fluorescent compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
19.
An enantioselective C(sp3)?C(sp3) cross‐coupling of racemic α‐silylated alkyl iodides and alkylzinc reagents is reported. The reaction is catalyzed by NiCl2/(S,S)‐Bn‐Pybox and yields α‐chiral silanes with high enantiocontrol. The catalyst system does not promote the cross‐coupling of the corresponding carbon analogue, corroborating the stabilizing effect of the silyl group on the alkyl radical intermediate (α‐silicon effect). Both coupling partners can be, but do not need to be, functionalized, and hence, even α‐chiral silanes with no functional group in direct proximity of the asymmetrically substituted carbon atom become accessible. This distinguishes the new method from established approaches for the synthesis of α‐chiral silanes.  相似文献   

20.
A new tandem C? N and C? C bond‐forming reaction has been achieved through RhII/Pd0 catalysis. The sequence first involves an iodine(III) oxidant, then the in situ generated iodine(I) by‐product is used as a coupling partner. The overall process demonstrates the synthetic value of iodoarenes produced in trivalent iodine reagent mediated oxidations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号