共查询到20条相似文献,搜索用时 15 毫秒
1.
Lulu Wang Minxin Yang Xiaochong Liu He Song Lu Han Wenyi Chu Zhizhong Sun 《应用有机金属化学》2016,30(8):680-683
A bidentate‐chelation assistant palladium‐catalyzed direct C‐H cyanation of picolinamides with TMSCN is described. The reaction of various derivatives gave the corresponding cyanated products in moderate to good yields under mild conditions. In addition, the cyanated product could transform into some valuable functional groups in good yields. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
2.
An efficient method for preparation of aryl nitriles—using [Pd{C6H2(CH2CH2 NH2)‐(OMe)2,3,4} (µ‐Br)]2 complex as an efficient catalyst and K4[Fe(CN)6] as a green cyanide source—from aryl bromides, aryl iodides and aryl chlorides under microwave irradiation has been reported. This complex has been demonstrated to be an active and efficient catalyst for this reaction. Using a catalytic amount of this synthesized palladium complex in DMF at 130 °C led to production of the cyanoarenes in excellent yields in short reaction times. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
cis,cis,cis‐1,2,3,4‐Tetrakis(diphenylphosphinomethyl)cyclopentane–[PdCl(C3H5)]2 efficiently catalyses the Heck reaction of alk‐1‐en‐3‐ol with a variety of aryl halides. In the presence of hex‐1‐en‐3‐ol or oct‐1‐en‐3‐ol, the β‐arylated carbonyl compounds were selectively obtained. Turnover numbers up to 84 000 can be obtained for this reaction. Linalool and 2‐methylbut‐3‐en‐2‐ol led regio‐ and stereoselectively to the corresponding (E)‐1‐arylalk‐1‐en‐3‐ol derivatives. A minor electronic effect of the substituents of the aryl bromide was observed. Quite similar reaction rates were generally observed in the presence of activated aryl bromides such as bromoacetophenone and deactivated aryl bromides such as bromoanisole, indicating that, with these alkenols and this catalyst, the oxidative addition of aryl bromides to palladium is not the rate‐limiting step. It should be noted that this reaction also proceeds with sterically very congested aryl bromides such as 9‐bromoanthracene or 2,4,6‐triisopropylbromobenzene or with a vinyl bromide. On the other hand, low yields were obtained with aryl chlorides. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
4.
5.
MCM‐41‐supported tridentate nitrogen palladium(II) complex [MCM‐41‐3 N‐Pd(II)] was conveniently synthesized from commercially available and cheap 3‐(2‐aminoethylamino)propyltrimethoxysilane via immobilization on MCM‐41, followed by reacting with pyridine‐2‐carboxaldehyde and PdCl2. It was found that this palladium complex is an excellent catalyst for the Suzuki–Miyaura coupling reaction of aryl bromides on two points: (i) the use of 5 × 10−4 mol equiv. of MCM‐41‐3 N‐Pd(II) under air afforded the coupling products efficiently after easy workup; (2) the catalyst can be reused many times without loss of catalytic activity. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
7.
This study describes a general palladium-catalyzed cyanation of aryl bromides using K4[Fe(CN)6] as the cyanide surrogate. The reactions can be successfully conducted under mild reaction conditions (at 50 °C) in mixed solvents (water/MeCN = 1:1) without any surfactant additives, and afford the desired aryl nitriles in good-to-excellent yields. Particularly noteworthy is that this system allows the mildest reaction temperature reported so far for palladium-catalyzed cyanation of aryl bromides with K4[Fe(CN)6] source in general. Common functional groups, including keto, aldehyde, free amine, and heterocyclic substrates are compatible under this system. Interestingly, the phosphine ligands bearing -PCy2 moiety, which usually show excellent activity in aryl halide couplings, are found less effective than the corresponding ligands with -PPh2 group. 相似文献
8.
Yi‐Zhong Zhu 《合成通讯》2013,43(19):3359-3366
Aryl nitriles have been prepared from the corresponding aryl halides with potassium hexacyanoferrate(II) using Pd/C as a catalyst. No ligand or cocatalyst is required. This protocol also avoids the use of highly toxic alkali cyanides. Furthermore, the catalyst can be recycled via simple filtration and washing sequences. 相似文献
9.
A new nickel(II) σ‐aryl complex, trans‐chloro(9‐phenanthrenyl)bis(triphenylphosphine)nickel(II), was used as a precatalyst for the Suzuki–Miyaura coupling reactions of aryl chlorides. The catalytic conditions were optimized by investigating the cross‐coupling of p‐chloroanisole with phenylboronic acid. The results show that this complex is efficient for both electron‐rich and electron‐deficient aryl chlorides, though it gives better yields for activated arylboronic acids than deactivated ones. All isolated cross‐coupled biaryl products have been characterized by 1H and 13C NMR, and their spectral data are consistent with those reported. Side products from the coupling of arylboronic acid with the precatalyst complex have also been isolated and characterized, which is helpful for understanding the coupling mechanism. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
11.
New Oxides with the “Butterfly-Motive”: Rb6[Fe2O5] and K6[Fe2O5] Rb6[Fe2O5] and K6[Fe2O5] were obtained for the first time by annealing intimate mixtures of “Rb6CdO4” with CdO (molar ratio 1 : 1.1) and KO0.48 with CdO (molar ratio 5.9 : 1) respectively in closed Fe-cylinders. Determination and refinement of the crystalstructure confirms the space group C2/m (four-circle-diffractometer data). Rb6[Fe2O5]: Ag Kα , 720 out of 1220 Io(hkl), R = 9.68%, Rw = 6.09%; a = 718.9pm, b = 1183.1 pm, c = 695.4pm, β = 95.05°, Z = 2; K6[Fe2O5]: MoKα , 1214 Out of 12141o(hkl), R = 3.20070, Rw = 2.48%, a = 691.21 pm, b = 1142.78pm, c = 665.50pm, β = 93.82°, Z = 2. The binuclear unit [O2FeOFeO2]6? already known to be planar with oxoferrates(II) now was observed to be angular here and closely related to Na6[Be2O5]. 相似文献
12.
Copper-catalyzed cyanation of aryl halides was improved to be more economical and environmentally friendly by using water as the solvent and ligand-free Cu(OAc)2·H2O as the catalyst under microwave heating. The suggested methodology was applicable to a wide range of substrates including aryl iodides and activated aryl bromides. 相似文献
13.
KCa(H2O)2[FeIII(CN)6]⋅H2O Nanoparticles as an Antimicrobial Agent against Staphylococcus aureus 下载免费PDF全文
Zhongxia Wang Dr. Bing Yu Huda Alamri Sriramakrishna Yarabarla Prof. Dr. Min‐Ho Kim Prof. Dr. Songping D. Huang 《Angewandte Chemie (International ed. in English)》2018,57(8):2214-2218
Biocompatible nanoparticles based on a calcium analogue of Prussian blue were designed and synthesized to take advantage of their ability to penetrate the cell membrane in Staphylococcus aureus and to undergo selective ion exchange with intracellular iron to disrupt iron metabolism in such pathogenic bacteria for antibacterial applications. KCa(H2O)2[FeIII(CN)6]?H2O nanoparticles penetrate the bacterial cell membrane and sequester intracellular iron by ion exchange to form insoluble Prussian blue, thus inhibiting bacterial growth. 相似文献
14.
Amandeep Kaur Sra Marius Andruh Olivier Kahn Stphane Golhen Lahcne Ouahab J. V. Yakhmi 《Angewandte Chemie (International ed. in English)》1999,38(17):2606-2609
Long-range ferromagnetic ordering at 3 K is observed for the title compound, which may be considered as a fully localized mixed-valence species (Mo3+ and Mo4+) as well as a mixed-spin species (low-spin and high-spin Mn2+ ions). Its two-dimensional structure consists of heart-shaped 48-membered rings, and each ring contains 16 metal centers (see picture). 相似文献
15.
16.
A new set of palladium(II) complexes comprising phenyl(thiazolyl)thiourea ligands have been successfully synthesized and characterized with the aid of analytical as well as spectral (IR, UV–visible and NMR) methods. A distorted square‐planar geometry with N^S coordination mode of thiourea ligands in the new palladium complexes was corroborated by single‐crystal X‐ray diffraction methods. Interestingly, the palladium(II) thiourea complexes showed the highest catalytic activity with 0.1 mol% catalyst loading in Suzuki–Miyaura cross‐coupling reactions utilizing a range of aryl bromides/unactivated aryl chlorides with arylboronic acids as coupling partners in aqueous–organic media. Syntheses of diaryl ketones using aryl esters and arylboronic acids as coupling partners were also achieved with low catalyst loading within 20 h. The potential of our catalyst was demonstrated by its wide substrate scope, low catalyst loadings and high isolated yield. Moreover, the influences of key parameters like solvent, base, temperature and catalyst loading were also investigated. 相似文献
17.
18.
Ran Li Prof. Dr. Qingzhong Li Prof. Dr. Jianbo Cheng Zhenbo Liu Prof. Dr. Wenzuo Li 《Chemphyschem》2011,12(12):2289-2295
We designed M1???C6H5X???HM2 (M1=Li+, Na+; X=Cl, Br; M2=Li, Na, BeH, MgH) complexes to enhance halogen–hydride halogen bonding with a cation–π interaction. The interaction strength has been estimated mainly in terms of the binding distance and the interaction energy. The results show that halogen–hydride halogen bonding is strengthened greatly by a cation–π interaction. The interaction energy in the triads is two to six times as much as that in the dyads. The largest interaction energy is ?8.31 kcal mol?1 for the halogen bond in the Li+???C6H5Br???HNa complex. The nature of the cation, the halogen donor, and the metal hydride influence the nature of the halogen bond. The enhancement effect of Li+ on the halogen bond is larger than that of Na+. The halogen bond in the Cl donor has a greater enhancement than that in the Br one. The metal hydride imposes its effect in the order HBeH<HMgH<HNa<HLi for the Cl complex and HBeH<HMgH<HLi<HNa for the Br complex. The large cooperative energy indicates that there is a strong interplay between the halogen–hydride halogen bonding and the cation–π interaction. Natural bond orbital and energy decomposition analyses indicate that the electrostatic interaction plays a dominate role in enhancing halogen bonding by a cation–π interaction. 相似文献
19.