首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
复杂应力状态镍基单晶合金低周疲劳损伤模型   总被引:1,自引:0,他引:1  
丁智平  陈吉平  尹泽勇 《应用力学学报》2005,22(2):310-314,i014
根据连续介质损伤力学理论,采用应变能释放率作为热力学广义力描述正交异性材料的疲劳损伤过程,引入取向函数考虑镍基单晶合金晶体取向对疲劳损伤的非线性影响,提出了一个各向异性疲劳损伤模型。应用多元线性回归分析方法,拟合疲劳试验数据可确定模型参数。从应变能释放率的应变空间表达式出发,导出了含有3个弹性常数的单晶合金应变三轴性因子,它既反映了材料性能的晶体取向相关性,又反映了正应力和剪应力的相互作用,并可退化为各向同性材料的应变三轴性因子。利用该模型对CMSX-2镍基单晶合金在应力控制对称循环拉-扭载荷作用下的低周疲劳寿命进行预测,预测值与试验值吻合的相当好,试验所得数据均落在2.2倍偏差的分布带内。  相似文献   

2.
This paper deals with equilibrium problems in nonlinear dissipative inelasticity, where inelastic effects are produced by the damage of the material. The inelastic constitutive law is obtained by modifying the classical constitutive law for a hyperelastic isotropic material through a damage function. To define this damage function, which allows to measure the effective stress and the dissipated energy, it is first used the Clausius-Duhem inequality, to have the (rate-independent) flow law of the damaged state and then it has been imposed a damage criterion based on an energy approach. After making the constitutive modeling, the boundary-value problem of the Rivlin’s cube, now composed of damaged material, is formulated. The purpose is to analyze a three-dimensional body that, during the deformation process, experiences a progressively increasing damage. Equilibrium branches of symmetric and asymmetric solutions, together to bifurcation points, are computed. Emphasis is placed in investigating how the damage can alter these equilibrium paths with respect to the virgin undamaged case. In particular, the stress reductions caused by damage can give rise to transitions from hardening type to the softening one of the constitutive behavior. These changes can affect the quality of the equilibrium solutions. Accordingly, the analysis is completed by assessing the stability of the solutions. For this aim, the energetic method is extended to damaged materials.  相似文献   

3.
A full-field optical method called Digital Gradient Sensing (DGS) for measuring stress gradients due to an impact load on a planar transparent sheet is presented. The technique is based on the elasto-optic effect exhibited by transparent solids due to an imposed stress field causing angular deflections of light rays quantified using 2D digital image correlation method. The measured angular deflections are proportional to the in-plane gradients of stresses under plane stress conditions. The method is relatively simple to implement and is capable of measuring stress gradients in two orthogonal directions simultaneously. The feasibility of this method to study material failure/damage is demonstrated on transparent planar sheets of PMMA subjected to both quasi-static and dynamic line load acting on an edge. In the latter case, ultra high-speed digital photography is used to perform time-resolved measurements. The quasi-static measurements are successfully compared with those based on the Flamant solution for a line-load acting on a half-space in regions where plane stress conditions prevail. The dynamic measurements, prior to material failure, are also successfully compared with finite element computations. The measured stress gradients near the impact point after damage initiation are also presented and failure behavior is discussed.  相似文献   

4.
The structural theory of short-term damage is generalized to the case where the undamaged components of a particulate composite deform nonlinearly under loads that induce a compound stress state. The basis for this generalization is the stochastic elasticity equations for a particulate composite with porous components whose skeletons deform nonlinearly. Damage in a microvolume of the material is assumed to occur in accordance with the Huber-Mises failure criterion. Balance equations for damaged microvolume are derived for the physically nonlinear materials of the components. Together with the macrostress-macrostrain relationship for a particulate composite with porous nonlinear components, they constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage. Algorithms for calculating the microdamage-macrostrain relationship and plotting stress-strain curves are proposed. Such curves are plotted for the case where the composite is subjected to a combination of normal and tangential loads, and microdamages occur in the linearly hardened matrix and do not in the linearly elastic inclusions. The stress-strain curves are examined depending on the volume fraction of inclusions and presence of tangential stresses __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 12, pp. 48–57, December, 2006.  相似文献   

5.
利用损伤函数概念,建立了一个普遍形式的局部断裂准则。该准则考虑了局掊应力,应变和损伤历史对断裂的影响,根据损伤力学理选取了一个新的连续损伤函数,从而导出一个新的连续损伤断裂准则。新的临界断裂参数WDC,具有明显的物理意义,且易通过试验测得,是一个不依赖于应力状态的材料九。文中还从细观力学理论和有关的试验资料出发,选取了相应的损伤函数,再现了前人的细观力学准则和经验准则。  相似文献   

6.
A theory of material growth (mass creation and resorption) is presented in which growth is viewed as a local rearrangement of material inhomogeneities described by means of first- and second-order uniformity “transplants”. An essential role is played by the balance of canonical (material) momentum where the flux is none other than the so-called Eshelby material stress tensor. The corresponding irreversible thermodynamics is expanded. If the constitutive theory of basically elastic materials is only first-order in gradients, diffusion of mass growth cannot be accommodated, and volumetric growth then is essentially governed by the inhomogeneity velocity “gradient” (first-order transplant theory) while the driving force of irreversible growth is the Eshelby stress or, more precisely, the “Mandel” stress, although the possible influence of “elastic” strain and its time rate is not ruled out. The application of various invariance requirements leads to a rather simple and reasonable evolution law for the transplant. In the second-order theory which allows for growth diffusion, a second-order inhomogeneity tensor needs to be introduced but a special theory can be devised where the time evolution of the second-order transplant can be entirely dictated by that of the first-order one, thus avoiding insuperable complications. Differential geometric aspects are developed where needed.  相似文献   

7.
Creep strength of welded joints can be estimated by continuum damage mechanics. In this case constitutive equations are required for different constituents of the welded joint: the weld metal, the heat-affected zone, and the parent material. The objective of this paper is to model the anisotropic creep behavior in a weld metal produced by multipass welding. To explain the origins of anisotropic creep, a mechanical model for a binary structure composed of fine-grained and coarse-grained constituents with different creep properties is introduced. The results illustrate the basic features of the stress redistribution and damage growth in the constituents of the weld metal and agree qualitatively with experimental observations. The structural analysis of a welded joint requires a model of creep for the weld metal under multiaxial stress states. For this purpose the engineering creep theory based on the creep potential hypothesis, the flow rule, and assumption of transverse isotropy is applied. The outcome is a coordinate-free equation for secondary creep formulated in terms of the Norton–Bailey–Odqvist creep potential and three invariants of the stress tensor. The material constants are identified according to the experimental data presented in the literature.  相似文献   

8.
9.
Three methods to allow for damage of isotropic materials are discussed. The relations of the theory of deformation along paths of small curvature are used as equations of state. Rabotnov’s scalar equation is used to study the damage of a material during thermoviscoelastoplastic deformation. The stress determined by a stress rupture criterion that accounts for the stress mode is taken as an equivalent stress. An algorithm based on the finite-element method is developed to solve three-dimensional problems of thermoviscoelastoplasticity with allowance for material damage. The numerical results obtained are compared with experimental data __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 12, pp. 110–121, December 2007.  相似文献   

10.
Theoretical model for deformability of brittle rock-like materials in the presence of an oriented damage of their internal structure is formulated and verified experimentally. This model is based on the assumption that non-linearity of the stress–strain curves of these materials is a result of irreversible process of oriented damage growth. It was also assumed that a material response, represented by the strain tensor, is a function of two tensorial variables: the stress tensor and the damage effect tensor that is responsible for the current state of the internal structure of the material. The explicit form of the respective non-linear stress–strain relations that account for the appropriate damage evolution equation was obtained by employing the theory of tensor function representations and by using the results of own experiments on damage growth. Such an oriented damage that grows in the material, described by the second order symmetric damage effect tensor, results in gradual development of the material anisotropy. The validity of the constitutive equations proposed was verified by using the available experimental results for concrete subjected to the plane state of stress. The relevant experimental data for sandstone and concrete subjected to tri-axial state of stress were also used.  相似文献   

11.
The structural theory of short-term damage is generalized to the case where the undamaged isotropic matrix of a fibrous composite with transversely isotropic reinforcement deforms nonlinearly under loads that induce a combined stress state, microdamages occurring in the matrix alone. The basis for this generalization is the stochastic elasticity equations for a fibrous composite with porous matrix whose skeleton deforms nonlinearly. The Huber-Mises failure criterion is used to describe the damage of microvolumes in the matrix. The damaged microvolume balance equation is derived for the physically nonlinear material of the matrix based on the properties of the distribution function for the statistically homogeneous random field of ultimate microstrength. Together with the macrostress-macrostrain relationship, they constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage. Algorithms for calculating the dependences of macrostresses and microdamages on macrostrains are proposed. Stress-strain curves for a composite with a linearly hardened matrix under simultaneous normal and tangential loads are plotted. The effect of the volume fraction of reinforcement and tangential load on the curves is examined __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 3, pp. 48–59, March 2007.  相似文献   

12.
A new modified couple stress theory for anisotropic elasticity is proposed. This theory contains three material length scale parameters. Differing from the modified couple stress theory, the couple stress constitutive relationships are introduced for anisotropic elasticity, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. However, under isotropic case, this theory can be identical to modified couple stress theory proposed by Yang et al. (Int J Solids Struct 39:2731–2743, 2002). The differences and relations of standard, modified and new modified couple stress theories are given herein. A detailed variational formulation is provided for this theory by using the principle of minimum total potential energy. Based on the new modified couple stress theory, composite laminated Kirchhoff plate models are developed in which new anisotropic constitutive relationships are defined. The First model contains two material length scale parameters, one related to fiber and the other related to matrix. The curvature tensor in this model is asymmetric; however, the couple stress moment tensor is symmetric. Under isotropic case, this theory can be identical to the modified couple stress theory proposed by Yang et al. (Int J Solids Struct 39:2731–2743, 2002). The present model can be viewed as a simplified couple stress theory in engineering mechanics. Moreover, a more simplified model of couple stress theory including only one material length scale parameter for modeling the cross-ply laminated Kirchhoff plate is suggested. Numerical results show that the proposed laminated Kirchhoff plate model can capture the scale effects of microstructures.  相似文献   

13.
Based on a dissipation inequality at finite strains and the effective stress concept, a Chaboche-type infinitesimal viscoplastic theory is extended to finite-strain cases coupled with anisotropic damage. The anisotropic damage is described by a rank-two symmetric tensor. The constitutive law is formulated in the corotational material coordinate system. Thus, the evolution equations of all internal variables can be expressed in terms of their material time derivatives. The numerical algorithm for implementing the material model in a finite element programme is also formulated, and several numerical examples are shown. Comparing the numerical simulations with experimental observations indicates that the present material model can describe well the primary, secondary and tertiary creep. It can also predict the anisotropic damage modes observed in experiments correctly.  相似文献   

14.
The structural theory of short-term damage is generalized to the case where the matrix of a particulate composite has microdamages and the inclusions deform nonlinearly. The basis for this generalization is the stochastic elasticity equations of a porous-matrix particle-reinforced composite. Microvolumes of the matrix meet the Huber-Mises failure criterion. A balance equation for damaged microvolumes is derived. The balance equation and the equations relating macrostresses and macrostrains of a particulate composite with porous matrix and physically nonlinear inclusions constitute a closed-form system. The system describes the coupled processes of physically nonlinear deformation and microdamage. Algorithms for calculating the microdamage-macrostrain relationship and plotting deformation diagrams are proposed. Uniaxial tension curves are plotted for the case where the material of inclusions is linearly hardening__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 2, pp. 3–11, February 2005.  相似文献   

15.
Manipulating acoustic wave propagation through a material have several interdisciplinary applications. Here we predict shift in energy flux deviation for acoustic waves propagating in unidirectional graphite/epoxy due to applied normal and shear stresses using both an analytical model, using acoustoelastic continuum theory, and a finite element discrete numerical model. The acoustoelastic theory predicts that the quasi-transverse (QT) wave exhibits larger shifts in energy flux deviation compared to quasi-longitudinal (QL) or the pure transverse (PT) due to an applied shear stress for fiber orientation angle ranging from 0° to 60°. Due to an applied shear stress the QT wave exhibits a shift in energy flux deviation at 0° fiber orientation angle as compared to normal stress case where the flux deviation and its load induced shift are both zero. A finite element model (FEM) is developed where equations of motion include the effect of nonlinear elastic coefficients. Element equations were integrated in time using Newmark’s method to determine the shift in energy flux deviations in graphite/epoxy for different loading cases. The energy flux shift of QT waves predicted by FEM for fiber orientation angles from 0° to 60° for applied shear stress case is in excellent agreement with acoustoelastic theory. Because energy shift magnitudes are not small, it is possible to experimentally measure these shifts and calibrate shifts with respect to load type (normal/shear) and magnitude.  相似文献   

16.
A formulation for anisotropic damage is established in the framework of the principle of strain equivalence. The damage variable is still related to the surface density of microcracks and microvoids and, as its evolution is governed by the plastic strain, it is represented by a second order tensor and is orthotropic. The coupling of damage with elasticity is written through a tensor on the deviatoric part of the energy and through a scalar taken as its trace on the hydrostatic part. The kinetic law of damage evolution is an extension of the isotropic case. Here, the principal components of the damage rate tensor are proportional to the absolute value of principal components of the plastic strain rate tensor and are a nonlinear function of the effective elastic strain energy. The proposed damage evolution law does not introduce any other material parameter. Several series of experiments on metals give a good validation of this theory. The coupling of damage with plasticity and the quasi-unilateral conditions of partial closure of microcracks naturally derive from the concept of effective stress. Finally, a study of strain localization makes it possible to determine the critical value of the damage at mesocrack initiation.  相似文献   

17.
Acoustic wave propagation from surrounding medium into a soft material can generate acoustic radiation stress due to acoustic momentum transfer inside the medium and material, as well as at the interface between the two. To analyze acoustic-induced deformation of soft materials, we establish an acoustomechanical constitutive theory by com-bining the acoustic radiation stress theory and the nonlinear elasticity theory for soft materials. The acoustic radiation stress tensor is formulated by time averaging the momen-tum equation of particle motion, which is then introduced into the nonlinear elasticity constitutive relation to construct the acoustomechanical constitutive theory for soft materials. Considering a specified case of soft material sheet subjected to two counter-propagating acoustic waves, we demonstrate the nonlinear large deformation of the soft material and ana-lyze the interaction between acoustic waves and material deformation under the conditions of total reflection, acoustic transparency, and acoustic mismatch.  相似文献   

18.
The effective stress concept, now classical in continuum damage mechanics, is generalized to the case of an initial anisotropy. In order to be used for both damage–elasticity and damage–(visco-)plasticity coupling, the effective stress should not depend on the elastic properties. Kelvin decomposition of the elasticity tensor allows to define such a stress for isotropic and cubic symmetries. For other material symmetries, the concept of multiple effective stresses is proposed. To cite this article: R. Desmorat, C. R. Mecanique 337 (2009).  相似文献   

19.
程礼  赵兵兵  李全通  李宁 《实验力学》2010,25(4):415-419
表面强化技术可以显著提高材料的疲劳性能,广泛应用于航空零部件的加工制造。在试验研究强化工艺对材料疲劳性能的增强效果时,常采用升降法来进行。针对升降法试验中存在的初始应力不易确定的问题,根据线性累积损伤理论和已知表面强化前材料疲劳特性的特点,提出一种快速确定升降法试验初始应力的方法,应用于K417材料激光冲击强化效果试验验证中。该方法仅需通过2~3个试件的实验即可找到适当的初始应力。通过对不同表面状态标准试片的振动疲劳试验,验证了激光冲击强化可较大幅度增强材料的疲劳性能。  相似文献   

20.
The mechanical testing of thin layers of soft materials is an important but difficult task. Spherical indentation provides a convenient method to ascertain material properties whilst minimising damage to the material by allowing testing to take place in situ. However, measurement of the viscoelastic properties of these soft materials is hindered by the absence of a convenient yet accurate model which takes into account the thickness of the material and the effects of the underlying substrate. To this end, the spherical indentation of a thin layer of viscoelastic solid material is analysed. It is assumed that the transient mechanical properties of the material can be described by the generalised standard linear solid model. This model is incorporated into the theory and then solved for the special case of a stress relaxation experiment taking into account the finite ramp time experienced in real experiments. An expression for the force as a function of the viscoelastic properties, layer thickness and indentation depth is given. The theory is then fitted to experimental data for the spherical indentation of poly(dimethyl)siloxane mixed with its curing agent to the ratios of 5:1, 10:1 and 20:1 in order to ascertain its transient shear moduli and relaxation time constants. It is shown that the theory correctly accounts for the effect of the underlying substrate and allows for the accurate measurement of the viscoelastic properties of thin layers of soft materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号