首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two novel chiral well‐defined rhodium complexes, Rh(cod)(L‐Phe) (cod = 1,5‐cyclooctadiene, Phe = phenylalanine) and Rh(cod)(L‐Val) (Val = valine) were synthesized, isolated by recrystallization, and characterized. The helix‐sense‐selective polymerization (HSSP) of an achiral 3,4,5‐trisubstituted phenylacetylene, p‐dodecyloxy‐m,m‐dihydroxyphenylacetylene (DoDHPA) was examined by using the two Rh complexes as catalysts. These catalysts provided high molecular weight polymers (Mw 28 × 104?45 × 104) in about 40%–85% yields. The resulting polymers exhibited a bisignated CD signal at about 300 nm and a broad signal around 470 nm, indicating that they have preferential one‐handed helical structure. The present catalysts achieved larger molar ellipticity up to [θ]310 = 13.0 × 104 deg cm2/dmol than those with binary chiral catalytic systems, [Rh(cod)Cl]2/(L‐phenylalaninol), [Rh(cod)Cl]2/(L‐valinol), and [Rh(nbd)Cl]2/(R)‐PEA. All these results manifest that the present, well‐defined Rh complexes serve as excellent catalysts for the HSSP of DoDHPA. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2346–2351  相似文献   

2.
The ability of transition metal catalysts to add or remove hydrogen from organic substrates by transfer hydrogenation is a valuable synthetic tool. Towards a series of novel metal complexes with a P―NH ligand, [Ph2PNHCH2―C4H3O] derived from furfurylamine were synthesized. Reaction of [Ph2PNHCH2―C4H3O] 1 with [Ru(η6p‐cymene)(μ‐Cl)Cl]2, [Ru(η6‐benzene)(μ‐Cl)Cl]2, [Rh(μ‐Cl)(cod)]2 and [Ir(η5‐C5Me5)(μ‐Cl)Cl]2 gave a range of new monodentate complexes [Ru(Ph2PNHCH2―C4H3O)(η6p‐cymene)Cl2] 2 , [Ru(Ph2PNHCH2―C4H3O)(η6‐benzene)Cl2] 3 , [Rh(Ph2PNHCH2‐C4H3O)(cod)Cl] 4 , and [Ir(Ph2PNHCH2‐C4H30)(η5‐C5Me5)Cl2] 5 , respectively. All new complexes were fully characterized by analytical and spectroscopic methods. 31P‐{1H} NMR, distortionless enhancement by polarization transfer (DEPT) or 1H‐13C heteronuclear correlation (HETCOR) experiments were used to confirm the spectral assignments. Following activation by KOH, compounds 1 , 2 , 3 , 4 catalyzed the transfer hydrogenation of acetophenone derivatives to 1‐phenylethanol derivatives in the presence of iso‐PrOH as the hydrogen source. Notably [Ru(Ph2PNHCH2‐C4H3O)(η6‐benzene)Cl2] 3 acts as an excellent catalyst, giving the corresponding alcohols in 98–99% yield in 20 min at 82°C (time of flight ≤ 297 h?1) for the transfer hydrogenation reaction in comparison to analogous rhodium or iridium complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The ready availability of rare parent amido d8 complexes of the type [{M(μ‐NH2)(cod)}2] (M=Rh ( 1 ), Ir ( 2 ); cod=1,5‐cyclooctadiene) through the direct use of gaseous ammonia has allowed the study of their reactivity. Both complexes 1 and 2 exchanged the di‐olefines by carbon monoxide to give the dinuclear tetracarbonyl derivatives [{M(μ‐NH2)(CO)2}2] (M=Rh or Ir). The diiridium(I) complex 2 reacted with chloroalkanes such as CH2Cl2 or CHCl3, giving the diiridium(II) products [(Cl)(cod)Ir(μ‐NH2)2Ir(cod)(R)] (R=CH2Cl or CHCl2) as a result of a two‐center oxidative addition and concomitant metal–metal bond formation. However, reaction with ClCH2CH2Cl afforded the symmetrical adduct [{Ir(μ‐NH2)(Cl)(cod)}2] upon release of ethylene. We found that the rhodium complex 1 exchanged the di‐olefines stepwise upon addition of selected phosphanes (PPh3, PMePh2, PMe2Ph) without splitting of the amido bridges, allowing the detection of mixed COD/phosphane dinuclear complexes [(cod)Rh(μ‐NH2)2Rh(PR3)2], and finally the isolation of the respective tetraphosphanes [{Rh(μ‐NH2)(PR3)2}2]. On the other hand, the iridium complex 2 reacted with PMe2Ph by splitting the amido bridges and leading to the very rare terminal amido complex [Ir(cod)(NH2)(PMePh2)2]. This compound was found to be very reactive towards traces of water, giving the more stable terminal hydroxo complex [Ir(cod)(OH)(PMePh2)2]. The heterocyclic carbene IPr (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) also split the amido bridges in complexes 1 and 2 , allowing in the case of iridium to characterize in situ the terminal amido complex [Ir(cod)(IPr)(NH2)]. However, when rhodium was involved, the known hydroxo complex [Rh(cod)(IPr)(OH)] was isolated as final product. On the other hand, we tested complexes 1 and 2 as catalysts in the transfer hydrogenation of acetophenone with iPrOH without the use of any base or in the presence of Cs2CO3, finding that the iridium complex 2 is more active than the rhodium analogue 1 .  相似文献   

4.
3‐Ethynylthiophene (3ETh) was polymerized with Rh(I) complexes: [Rh(cod)acac], [Rh(nbd)acac], [Rh(cod)Cl]2, and [Rh(nbd)Cl]2 (cod is η22‐cycloocta‐1,5‐diene and nbd η22‐norborna‐2,5‐diene), used as homogeneous catalysts and with the last two complexes anchored on mesoporous polybenzimidazole (PBI) beads: [Rh(cod)Cl]2/PBI and [Rh(nbd)Cl]2/PBI used as heterogeneous catalysts. All tested catalyst systems give high‐cis poly(3ETh). In situ NMR study of homogeneous polymerizations induced with [Rh(cod)acac] and [Rh(nbd)acac] complexes has revealed: (i) a transformation of acac ligands into free acetylacetone (Hacac) occurring since the early stage of polymerization, which suggests that this reaction is part of the initiation, (ii) that the initiation is rather slow in both of these polymerization systems, and (iii) a release of cod ligand from [Rh(cod)acac] complex but no release of nbd ligand from [Rh(nbd)acac] complex during the polymerization. The stability of diene ligand binding to Rh‐atom in [Rh(diene)acac] catalysts remarkably affects only the molecular weight but not the yield of poly(3ETh). The heterogeneous catalyst systems also provide high‐cis poly(3ETh), which is of very low contamination with catalyst residues since a leaching of anchored Rh complexes is negligible. The course of heterogeneous polymerizations is somewhat affected by limitations arising from the diffusion of monomer inside catalyst beads. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2776–2787, 2008  相似文献   

5.
The water‐soluble rhodium complex generated in situ from [Rh (COD)Cl]2 in aqueous ammonia has been revealed as a highly efficient catalyst for the hydrogenation of aromatic nitriles, to primary amines with excellent yields. The catalyst is also highly selective towards primary amines in the case of sterically hindered aliphatic nitriles. The catalytic system can also be recycled and re‐used with no significant loss of activity.  相似文献   

6.
Efficient rhodium(III) catalysts were developed for asymmetric hydrogenation of simple olefins. A new series of chloride‐bridged dinuclear rhodium(III) complexes 1 were synthesized from the rhodium(I) precursor [RhCl(cod)]2, chiral diphosphine ligands, and hydrochloric acid. Complexes from the series acted as efficient catalysts for asymmetric hydrogenation of (E)‐prop‐1‐ene‐1,2‐diyldibenzene and its derivatives without any directing groups, in sharp contrast to widely used rhodium(I) catalytic systems that require a directing group for high enantioselectivity. The catalytic system was applied to asymmetric hydrogenation of allylic alcohols, alkenylboranes, and unsaturated cyclic sulfones. Control experiments support the superiority of dinuclear rhodium(III) complexes 1 over typical rhodium(I) catalytic systems.  相似文献   

7.
Hydrogen transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity. Reaction of [Ph2PNHCH2‐C4H3S] with [Ru(η6‐benzene)(µ‐Cl)Cl]2, [Rh(µ‐Cl)(cod)]2 and [Ir(η5‐C5Me5)(µ‐Cl)Cl]2 gave a range of new monodendate complexes [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, [Rh(Ph2PNHCH2‐C4H3S)(cod)Cl], 2, and [Ir(Ph2PNHCH2‐C4H3S)(η5‐C5Me5)Cl2], 3, respectively. All new complexes were fully characterized by analytical and spectroscopic methods. 1H? 31P NMR, 1H? 13C HETCOR or 1H? 1H COSY correlation experiments were used to confirm the spectral assignments. 1–3 are suitable catalyst precursors for the transfer hydrogenation of acetophenone derivatives. Notably [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, acts as an excellent catalyst, giving the corresponding alcohols in 98–99% yields in 30 min at 82 °C (TOF ≤200 h?1) for the transfer hydrogenation reaction in comparison to analogous rhodium or iridium complexes. This transfer hydrogenation is characterized by low reversibility under these conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Six new [RhBr(NHC)(cod)] (NHC = N‐heterocyclic carbene; cod = 1,5‐cyclooctadiene) type rhodium complexes ( 4–6 ) have been prepared by the reaction of [Rh(μ‐OMe)(cod)]2 with a series of corresponding imidazoli(in)ium bromides ( 1–3 ) bearing mesityl (Mes) or 2,4,6‐trimethylbenzyl (CH2Mes) substituents at N1 and N3 positions. They have been fully characterized by 1 H, 13 C and heteronuclear multiple quantum correlation NMR analyses, elemental analysis and mass spectroscopy. Complexes of type [(NHC)RhBr(CO)2] (NHC = imidazol‐2‐ylidene) ( 7b–9b ) were also synthesized to compare σ‐donor/π‐acceptor strength of NHC ligands. Transfer hydrogenation (TH) reaction of acetophenone has been comparatively studied by using complexes 4–6 as catalysts. The symmetrically CH2Mes‐substituted rhodium complex bearing a saturated NHC ligand ( 5a ) showed the highest catalytic activity for TH reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

10.
The reaction of cationic diolefinic rhodium(I) complexes with 2‐(diphenylphosphino)benzaldehyde (pCHO) was studied. [Rh(cod)2]ClO4 (cod=cycloocta‐1,5‐diene) reacted with pCHO to undergo the oxidative addition of one pCHO with (1,2,3‐η)cyclooct‐2‐en‐1‐yl (η3‐C8H13) formation, and the coordination of a second pCHO molecule as (phosphino‐κP)aldehyde‐κO(σ‐coordination) chelate to give the 18e acyl(allyl)rhodium(III) species [Rh(η3‐C8H13)(pCO)(pCHO)]ClO4 (see 1 ). Complex 1 reacted with [Rh(cod)(PR3)2]ClO4 (R=aryl) derivatives 3 – 6 to give stable pentacoordinated 16e acyl[(1,2,3‐η)‐cyclooct‐2‐en‐1‐yl]rhodium(III) species [Rh(η3‐C8H13)(pCO)(PR3)]ClO4 7 – 10 . The (1,2,3‐η)‐cyclooct‐2‐en‐1‐yl complexes contain cis‐positioned P‐atoms and were fully characterized by NMR, and the molecular structure of 1 was determined by X‐ray crystal diffraction. The rhodium(III) complex 1 catalyzed the hydroformylation of hex‐1‐ene and produced 98% of aldehydes (n/iso=2.6).  相似文献   

11.
Polyamino acids (amino acid = valine, alanine, lysine and arginine) and the protein cytochrome C (Cyt C) have been treated with [Rh(CO)2Cl]2 (1) to give polymersupportedcis-dicarbonyl species. The polymer-supported rhodium complexes, characterised on the basis of infrared and ESCA data, have been found to undergo reversible decarbonylation reaction. The Cyt C-supported rhodium complex acts as a hydrogenation catalyst of low to moderate activity. In the hydrogenation of 3-methyl cyclohexanone no stereoselectivity has been observed.  相似文献   

12.
The immobilization of [Rh(cod)OCH3]2 (cod = cycloocta‐1,5‐diene) on mesoporous molecular sieves MCM‐41 provides the first inorganic‐type hybrid catalyst, which affords heterogeneous polymerization of phenylacetylene and its ring‐substituted derivatives, – 2‐fluorophenylacetylene, 4‐fluorophenylacetylene, and 4‐pentylphenylacetylene – into readily isolable high‐molecular‐weight (w from 50 000 to 180 000) substituted polyvinylenes of high cis‐transoid structure. The activity of this catalyst is compared with that of homogeneous catalyst [Rh(cod)OCH3]2.  相似文献   

13.
The catalyst precursor preparedin situ from rhodium dimer [Rh(cod)Cl]2 and a new water-soluble phosphine Ph2PCH2CH2CONHC(CH3)2CH2SO3H (in Li+ salt form) has been found to act as an effective olefin hydrogenation catalyst. Catalytic hydrogenation reactions have been tested in either two phase: aqueous catalyst/insoluble olefin or methanolic catalyst/olefin systems. The observed reaction rates were higher for terminal than for internal olefins. 1-Hexene in methanolic solution has been hydrogenated with a turnover frequency of about 8000 h–1. This system has also been applied in the form of a supported aqueous phase catalyst.  相似文献   

14.
To develop more active catalysts for the rhodium‐catalyzed addition of carboxylic acids to terminal alkynes furnishing anti‐Markovnikov Z enol esters, a thorough study of the rhodium complexes involved was performed. A number of rhodium complexes were characterized by NMR, ESI‐MS, and X‐ray analysis and applied as catalysts for the title reaction. The systematic investigations revealed that the presence of chloride ions decreased the catalyst activity. Conversely, generating and applying a mixture of two rhodium species, namely, [Rh(DPPMP)2][H(benzoate)2] (DPPMP=diphenylphosphinomethylpyridine) and [{Rh(COD)(μ2‐benzoate)}2], provided a significantly more active catalyst. Furthermore, the addition of a catalytic amount of base (Cs2CO3) had an additional accelerating effect. This higher catalyst activity allowed the reaction time to be reduced from 16 to 1–4 h while maintaining high selectivity. Studies on the substrate scope revealed that the new catalysts have greater functional‐group compatibility.  相似文献   

15.
A metal‐containing N‐heterocyclic germylene based on a N‐mesityl (Mes)‐substituted oxalamidine framework is reported. The precursor (MesN=)2C–C(–N(H)Mes)2 ( 1 H2) was converted into its rhodium complex [Rh(κ2N‐ 1 H2)(cod)][OTf] ( 2 ) (cod = 1,5‐cyclooctadiene; OTf = triflate) in 62 % isolated yield. Subsequent reaction of 2 with Ge{N(SiMe3)2}2 gave the crystalline N‐heterocyclic germylene [Rh(cod)(μ‐ 1 )Ge][OTf] ( 3 ) in 50 % yield. The compounds under study were fully characterized by various methods, also including X‐ray crystallographic studies on single crystals of 2 and 3 . Density functional theory (DFT) calculations revealed that π conjugation in the bridging oxalamidine framework is increased and n(N)–p(Ge) π bonding is decreased upon κ2N metal coordination; a further weakening of the Ge–N bond occurs through triflate coordination to the GeII atom. Nevertheless, preliminary coordination studies revealed that 3 behaves as 2‐electron (L ‐type) germylene donor ligand. Treatment of 3 with [Ir(cod)Cl]2 furnished the heterobimetallic complex [Rh(cod)(μ‐ 1 )Ge‐Ir(cod)Cl][OTf] ( 4 ), as evidenced by NMR spectroscopic investigations and DFT calculations.  相似文献   

16.
The rhodium(I) complexes trans‐[Rh(diphos)(CO)Cl] 7 (diphos=pbpb), 8 (diphos=nbpb), and 9 (diphos=cbpb) were synthesized (Scheme 4) and used as catalysts for the carbonylation of MeOH to AcOH (Scheme 1). The trans coordination imposed by the rigid C‐spacer framework of the diphos ligands pbpb, nbpb, and cbpb, demonstrated by 31P‐NMR and IR spectroscopy of 7 – 9 and unambiguously confirmed by single‐crystal X‐ray structure analysis of 7 , improved the thermal stability of the rhodium(I) system under carbonylation conditions and, hence, the catalytic performance of the complexes. For the catalytic carbonylation of MeOH, the active catalyst could be prepared in situ from the mixture of [Rh(CO)2Cl]2 and the corresponding diphos ligand pbpb, nbpb, or cbpb, giving the same results as carbonylation in the presence of the isolated complexes 7, 8 or 9 (see Table). The highest activity was observed for complex 7 (or the mixture [Rh(CO)2Cl]2/pbpb, the catalytic turnover number (TON) being 950 after 15 min (170°, 22 bar).  相似文献   

17.
A series of novel quasi‐scorpionate CNC donor ligands, MeC(2‐C5H4N){CH2(imidazole‐R)} (R = methyl, n‐butyl, n‐propenyl), in which a chelating bis(NHC) core is supplemented by a hemi‐labile pyridyl donor, were prepared. The coordination chemistry of these ligands was investigated with silver, palladium, rhodium and iridium. The single crystal X‐ray structures of [Rh(NC2Me)(COD)]Cl 8a and [Ir(NC2Pr)(COD)]Br 9b were determined. The catalytic potential of the rhodium and iridium complexes was assessed in the transfer hydrogenation of ketones; the iridium complexes, which show superior performance, form very effective and stable catalysts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We have developed I2‐ or N‐iodosuccinimide (NIS)‐mediated amidiniumation of N‐alkenyl formamidines for the syntheses of cyclic formamidinium salts, some of which could be directly used as N‐heterocyclic carbene (NHC) precursors. Treatment of iodine‐containing formamidinium salts with Al2O3 led to the formation of cyclic formamidinium salts with an unsaturated backbone. A rhodium(I) complex ligated by a representative NHC was prepared by the reaction of [Rh(cod)Cl]2 (cod=1,5‐cyclooctadiene) with the free carbene obtained in situ from deprotonation of the corresponding formamidinium salts. The NHCs prepared in situ can also react with S8 to afford the corresponding thiones.  相似文献   

19.
New isocyanide ligands with meta‐terphenyl backbones were synthesized. 2,6‐Bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exhibited the highest rate acceleration in rhodium‐catalyzed hydrosilylation among other isocyanide and phosphine ligands tested in this study. 1H NMR spectroscopic studies on the coordination behavior of the new ligands to [Rh(cod)2]BF4 indicated that 2,6‐bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exclusively forms the biscoordinated rhodium–isocyanide complex, whereas less sterically demanding isocyanide ligands predominantly form tetracoordinated rhodium–isocyanide complexes. FTIR and 13C NMR spectroscopic studies on the hydrosilylation reaction mixture with the rhodium–isocyanide catalyst showed that the major catalytic species responsible for the hydrosilylation activity is the Rh complex coordinated with the isocyanide ligand. DFT calculations of model compounds revealed the higher affinity of isocyanides for rhodium relative to phosphines. The combined effect of high ligand affinity for the rhodium atom and the bulkiness of the ligand, which facilitates the formation of a catalytically active, monoisocyanide–rhodium species, is proposed to account for the catalytic efficiency of the rhodium–bulky isocyanide system in hydrosilylation.  相似文献   

20.
Dimeric rhodium complexes of the type [Rh(PP)(μ2‐Cl)]2 (PP=diphosphine) are often used as precatalysts and are generated “in situ” from the corresponding diolefin complexes by exchange of the diene with the desired diphosphine. Herein, we report that the “in situ” procedure also leads to unexpected monomeric pentacoordinated neutral complexes of the type [RhCl(PP)(diolefin)], for the first time herein characterized by NMR spectroscopy and X‐ray crystallography for the ligands 1,4‐bis(diphenylphosphino)propane (DPPP), 1,4‐bis(diphenylphosphino)butane (DPPB), and 2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl (BINAP). The pentacoordinated complexes are in equilibrium with the dimeric target compound [Rh(PP)(μ2‐Cl)]2. The equilibrium is influenced by the rhodium‐diolefin precursor, the solvent and the temperature. Based on the results of NMR and UV/Vis spectroscopic analysis (kinetics) it could be shown that the pentacoordinated complex [RhCl(PP)(diolefin)] may arise both from the “in situ”‐generated neutral complex [Rh(PP)(μ2‐Cl)] by reaction with the free diolefin and, more surprisingly, directly from [Rh(diolefin)(μ2‐Cl)]2 and the diphosphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号