首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reactions of thiophene‐2‐(N‐diphenylphosphino)methylamine, Ph2PNHCH2‐C4H3S, 1 and thiophene‐2‐[N,N‐bis(diphenylphosphino)methylamine], (Ph2P)2NCH2‐C4H3S, 2, with MCl2(cod) (M = Pd, Pt; cod = 1,5‐cyclooctadiene) or [Cu(CH3CN)4]PF6 yields the new complexes [M(Ph2PNHCH2‐C4H3S)2Cl2], M = Pd 1a, Pt 1b, [Cu(Ph2PNHCH2‐C4H3S)4]PF6, 1c, and [M(Ph2P)2NCH2‐C4H3S)Cl2], M = Pd 2a, Pt 2b, {Cu[(Ph2P)2NCH2‐C4H3S]2}PF6, 2c, respectively. The new compounds were isolated as analytically pure crystalline solids and characterized by 31P‐, 13C‐, 1H‐NMR and IR spectroscopy and elemental analysis. Furthermore, the solid‐state molecular structures of representative palladium and platinum complexes of bis(phosphine)amine, 2a and 2b, respectively, were determined using single crystal X‐ray diffraction analysis. The palladium complexes were tested as potential catalysts in the Heck and Suzuki cross‐coupling reactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

The interaction of [Ru(η6-arene)(μ-Cl)Cl]2 and Ir(η5-C5Me5)(μ-Cl)Cl]2 with a new Ionic Liquid-based phosphinite ligand, [(Ph2PO)-C6H9N2Ph]Cl, (2) gave [Ru((Ph2PO)-C6H9N2Ph)(η6-p-cymene)Cl2]Cl (3), [Ru((Ph2PO)-C6H9N2Ph)(benzene)Cl2]Cl (4) and [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5), complexes. All the compounds were characterized by a combination of multinuclear NMR and IR spectroscopy as well as elemental analysis. Furthermore, the Ru(II) and Ir(III) catalysts were applied to asymmetric transfer hydrogenation of acetophenone derivatives using 2-propanol as a hydrogen source. The results showed that the corresponding alcohols could be obtained with good activity (up to 55% ee and 99% conversion) under mild conditions. Notably, [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5) is more active than the other analogous complexes in the transfer hydrogenation (up to 81% ee).  相似文献   

4.
The reaction of 2‐(aminomethyl)aniline with 2 equivalents of PPh2Cl in the presence of Et3N, proceeds in CH2Cl2 to give N,N′‐bis(diphenylphosphino)‐2‐(aminomethyl)aniline 1 in good yield. Oxidation of 1 with aqueous H2O2, elemental sulfur or gray selenium gave the corresponding oxide, sulfide and selenide dichalcogenides [Ph2P(E)NHC6H4CH2NHP(E)Ph2] (E: O, 2a; S, 2b; Se, 2c), respectively. The reaction of [Ph2PNHC6H4CH2NHPPh2] with PdCl2(cod), PtCl2(cod) and [Cu(MeCN)4]PF6 gave the corresponding chelate complexes, PdCl21, PtCl21 and [Cu(1)2]PF6. The new compounds were fully characterized by NMR, IR spectroscopy and elemental analysis. The catalytic activity of the Pd(II) complex was tested in the Suzuki coupling and Heck reactions. The Pd(II) complex catalyzes the Suzuki coupling and Heck reaction, affording biphenyls and stilbenes respectively, in good yields. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The molecules of 2,2,2‐trichloro‐N,N′‐diphenylethane‐1,1‐diamine, C14H13Cl3N2, are linked into (040) sheets by a combination of C—H...Cl and C—H...π(arene) hydrogen bonds. In 2,2,2‐trichloro‐N,N′‐bis(4‐methylphenyl)ethane‐1,1‐diamine, C16H17Cl3N2, the molecules are linked into C(7) chains by two independent C—H...Cl hydrogen bonds and one Cl...Cl contact.  相似文献   

6.
In this work, ortho‐palladated complexes [Pd(µ‐Cl)(C6H4CH2 NRR′‐κ2‐C,N)]2 and [Pd(C6H4CH2NH2‐2‐C,N)Cl(Y)] were tested in the Suzuki–Miyaura cross‐coupling reaction. Cyclopalladated Pd(II) complexes as thermally stable catalysts can activate aryl bromides and chlorides. These complexes were active and efficient catalysts for the Suzuki–Miyaura reaction of aryl bromides and even less reactive aryl chlorides. The cross‐coupled products of a variety of aryl bromides and aryl chloride with phenylboronic acid in methanol as solvent at 60 °C were produced in excellent yields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Three new (N‐diphenylphosphino)‐isopropylanilines, having isopropyl substituent at the carbon 2‐ (1) 4‐ (2) or 2,6‐ (3) were prepared from the aminolysis of chlorodiphenylphosphine with 2‐isopropylaniline, 4‐isopropylaniline or 2,6‐diisopropylaniline, respectively, under anaerobic conditions. Oxidation of 1,2 and 3 with aqueous hydrogen peroxide, elemental sulfur or gray selenium gave the corresponding oxides, sulfides and selenides (Ph2P?E)NH? C6H4? 2‐CH(CH3)2, (Ph2P?E)NH? C6H4? 4‐CH(CH3)2 and (Ph2P?E)NH? C6H4? 2,6‐{CH(CH3)2}2, where E = O, S, or Se, respectively. The reaction of [M(cod)Cl2] (M = Pd, Pt; cod = 1,5‐cyclooctadiene) with two equivalents of 1,2 or 3 yields the corresponding monodendate complexes [M((Ph2P)NH? C6H4? 2‐CH(CH3)2)2Cl2], M = Pd 1d, M = Pt 1e, [M((Ph2P)NH? C6H4? 4‐CH(CH3)2)2Cl2], M = Pd 2d, M = Pt 2e and [M((Ph2P)NH? C6H4? 2,6‐(CH(CH3)2)2)2Cl2], M = Pd 3d, M = Pt 3e, respectively. All the compounds were isolated as analytically pure substances and characterized by NMR, IR spectroscopy and elemental analysis. Furthermore, representative solid‐state structure of [(Ph2P?S)NH? C6H4? 4‐CH(CH3)2] (2b) was determined using single crystal X‐ray diffraction technique. The complexes 1d–3d were tested and found to be highly active catalysts in the Suzuki coupling and Heck reaction, affording biphenyls and stilbenes, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The ability of transition metal catalysts to add or remove hydrogen from organic substrates by transfer hydrogenation is a valuable synthetic tool. Towards a series of novel metal complexes with a P―NH ligand, [Ph2PNHCH2―C4H3O] derived from furfurylamine were synthesized. Reaction of [Ph2PNHCH2―C4H3O] 1 with [Ru(η6p‐cymene)(μ‐Cl)Cl]2, [Ru(η6‐benzene)(μ‐Cl)Cl]2, [Rh(μ‐Cl)(cod)]2 and [Ir(η5‐C5Me5)(μ‐Cl)Cl]2 gave a range of new monodentate complexes [Ru(Ph2PNHCH2―C4H3O)(η6p‐cymene)Cl2] 2 , [Ru(Ph2PNHCH2―C4H3O)(η6‐benzene)Cl2] 3 , [Rh(Ph2PNHCH2‐C4H3O)(cod)Cl] 4 , and [Ir(Ph2PNHCH2‐C4H30)(η5‐C5Me5)Cl2] 5 , respectively. All new complexes were fully characterized by analytical and spectroscopic methods. 31P‐{1H} NMR, distortionless enhancement by polarization transfer (DEPT) or 1H‐13C heteronuclear correlation (HETCOR) experiments were used to confirm the spectral assignments. Following activation by KOH, compounds 1 , 2 , 3 , 4 catalyzed the transfer hydrogenation of acetophenone derivatives to 1‐phenylethanol derivatives in the presence of iso‐PrOH as the hydrogen source. Notably [Ru(Ph2PNHCH2‐C4H3O)(η6‐benzene)Cl2] 3 acts as an excellent catalyst, giving the corresponding alcohols in 98–99% yield in 20 min at 82°C (time of flight ≤ 297 h?1) for the transfer hydrogenation reaction in comparison to analogous rhodium or iridium complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In 2,2,2‐trichloro‐N,N′‐bis(4‐methoxyphenyl)ethane‐1,1‐diamine, C16H17Cl3N2O2, molecules are linked into helical chains by N—H...O hydrogen bonds. Molecules of 2,2,2‐trichloro‐N,N′‐bis(4‐chlorophenyl)ethane‐1,1‐diamine, C14H11Cl5N2, are connected into a three‐dimensional framework by two independent Cl...Cl interactions and one C—H...Cl hydrogen bond.  相似文献   

10.
The phosphorus ylide [Ph3PCHC(O)C6H4‐NO2–4] reacted with Pd(OAc)2 to give the C,C‐orthometallated complex [Pd{κ2(C,C)‐C6H4PPh2C(H)CO(C6H4‐NO2–4)}(μ‐OAc)]2, which underwent bridge exchange reaction with NaN3, NaCl, KBr and KI, respectively, to afford the binuclear C,C‐orthopalladated complexes [Pd{κ2(C,C)‐C6H4PPh2C(H)CO(C6H4‐NO2–4)}(μ‐X)]2 (X = N3 ( 1 ), Cl ( 2 ), Br ( 3 ) and I ( 4 )). The complexes were identified using spectroscopy (infrared and NMR), CHNS technique and single‐crystal X‐ray structure analysis. Thereafter, palladium nanoparticles with narrow size distribution were easily prepared using the refluxing reaction of iodo‐bridged orthopalladated complex 4 with poly(N ‐vinyl‐2‐pyrrolidone) (PVP) as the protecting group. The PVP‐stabilized palladium nanoparticles were characterized using a variety of techniques including X‐ray diffraction, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy, inductively coupled plasma analysis and Fourier transform infrared spectroscopy. The catalytic activity of the PVP‐stabilized palladium nanoparticles was evaluated in the Suzuki reaction of phenylboronic acid and the Heck reaction of styrene with aryl halides of varying electron densities. This catalyst exhibited excellent catalytic activity for Suzuki cross‐coupling reactions in ethanol–water. Notably, aryl chlorides which are cheaper and more accessible than their bromide and iodide counterparts also reacted satisfactorily using this catalyst. After completion of reactions, the catalyst could be separated using a simple method and used many times in repeat cycles without considerable loss in its activity.  相似文献   

11.
Hydrogen transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity. Reaction of [Ph2PNHCH2‐C4H3S] with [Ru(η6‐benzene)(µ‐Cl)Cl]2, [Rh(µ‐Cl)(cod)]2 and [Ir(η5‐C5Me5)(µ‐Cl)Cl]2 gave a range of new monodendate complexes [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, [Rh(Ph2PNHCH2‐C4H3S)(cod)Cl], 2, and [Ir(Ph2PNHCH2‐C4H3S)(η5‐C5Me5)Cl2], 3, respectively. All new complexes were fully characterized by analytical and spectroscopic methods. 1H? 31P NMR, 1H? 13C HETCOR or 1H? 1H COSY correlation experiments were used to confirm the spectral assignments. 1–3 are suitable catalyst precursors for the transfer hydrogenation of acetophenone derivatives. Notably [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, acts as an excellent catalyst, giving the corresponding alcohols in 98–99% yields in 30 min at 82 °C (TOF ≤200 h?1) for the transfer hydrogenation reaction in comparison to analogous rhodium or iridium complexes. This transfer hydrogenation is characterized by low reversibility under these conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
An α‐diimine Pd(II) complex containing chiral sec‐phenethyl groups, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dichloropalladium (rac‐ C1 ), was synthesized and characterized. rac‐ C1 was applied as an efficient catalyst for the Suzuki–Miyaura cross‐coupling reaction between various aniline halides and arylboronic acid in PEG‐400–H2O at room temperature. Among a series of aniline halides, rac‐ C1 did not catalyze the cross‐coupling of aniline chlorides and fluorides but efficiently catalyzed the cross‐coupling of aniline bromides and iodides with phenylboronic acid. The catalytic activity reduced slightly with increasing steric hindrance of the aniline bromides. The complexes {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]‐2,3‐butadiene}dichloropalladium and {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]acenaphthene}dichloropalladium were also found to be efficient catalysts for the reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In the solid state, 4‐methoxy‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C10H10Cl3N3O, (I), N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C9H8Cl3N3, (II), 4‐chloro‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C9H7Cl4N3, (III), 4‐bromo‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C9H7BrCl3N3, (IV), and 4‐trifluoromethyl‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C10H7Cl3F3N3, (V), display strong intramolecular N—H...N hydrogen bonding across the chelate ring and also intramolecular N—H...Cl contacts. Additional intermolecular hydrogen bonds link the molecules into chains, double chains or sheets in all cases except for compound (V). For compound (II), there are three independent molecules per asymmetric unit.  相似文献   

14.
Semirigid organic ligands can adopt different conformations to construct coordination polymers with more diverse structures when compared to those constructed from rigid ligands. A new asymmetric semirigid organic ligand, 4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine ( L ), has been prepared and used to synthesize three bimetallic macrocyclic complexes and one coordination polymer, namely, bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[dichloridozinc(II)] dichloromethane disolvate, [Zn2Cl4(C12H10N6)2]·2CH2Cl2, ( I ), the analogous chloroform monosolvate, [Zn2Cl4(C12H10N6)2]·CHCl3, ( II ), bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[diiodidozinc(II)] dichloromethane disolvate, [Zn2I4(C12H10N6)2]·2CH2Cl2, ( III ), and catena‐poly[[[diiodidozinc(II)]‐μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine] chloroform monosolvate], {[ZnI2(C12H10N6)]·CHCl3}n, ( IV ), by solution reaction with ZnX2 (X = Cl and I) in a CH2Cl2/CH3OH or CHCl3/CH3OH mixed solvent system at room temperature. Complex ( I ) is isomorphic with complex ( III ) and has a bimetallic ring possessing similar coordination environments for both of the ZnII cations. Although complex ( II ) also contains a bimetallic ring, the two ZnII cations have different coordination environments. Under the influence of the I? anion and guest CHCl3 molecule, complex ( IV ) displays a significantly different structure with respect to complexes ( I )–( III ). C—H…Cl and C—H…N hydrogen bonds, and π–π stacking or C—Cl…π interactions exist in complexes ( I )–( IV ), and these weak interactions play an important role in the three‐dimensional structures of ( I )–( IV ) in the solid state. In addition, the fluorescence properties of L and complexes ( I )–( IV ) were investigated.  相似文献   

15.
The crystal structures of 8‐phenoxycarbonyl‐1,8‐diazabicyclo[5.4.0]undec‐7‐enium chloride, C16H21N2O2+·Cl, (I), and 8‐methoxycarbonyl‐1,8‐diazabicyclo[5.4.0]undec‐7‐enium chloride monohydrate, C11H19N2O2+·Cl·H2O, (II), recently reported by Carafa, Mesto & Quaranta [Eur. J. Org. Chem. (2011), pp. 2458–2465], are analysed and discussed with a focus on crystal interaction assembly. Both compounds crystallize in the space group P21/c. The crystal packings are characterized by dimers linked through π–π stacking interactions and intermolecular nonclassical hydrogen bonds, respectively. Additional intermolecular C—H...Cl interactions [in (I) and (II)] and classical O—H...Cl hydrogen bonds [in (II)] are also evident and contribute to generating three‐dimensional hydrogen‐bonded networks.  相似文献   

16.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

17.
The crystal structures of three quinuclidine‐based compounds, namely (1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine monohydrate, C7H13N3·H2O ( 1 ), 1,2‐bis(1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine, C14H22N4 ( 2 ), and 1,2‐bis(1‐azoniabicyclo[2.2.2]octan‐3‐ylidene)hydrazine dichloride, C14H24N42+·2Cl? ( 3 ), are reported. In the crystal structure of 1 , the quinuclidine‐substituted hydrazine and water molecules are linked through N—H…O and O—H…N hydrogen bonds, forming a two‐dimensional array. The compound crystallizes in the centrosymmetric space group P21/c. Compound 2 was refined in the space group Pccn and exhibits no hydrogen bonding. However, its hydrochloride form 3 crystallizes in the noncentrosymmetric space group Pc. It shows a three‐dimensional network structure via intermolecular hydrogen bonding (N—H…C and N/C—H…Cl). Compound 3 , with its acentric structure, shows strong second harmonic activity.  相似文献   

18.
A series of new water‐soluble cyclopalladated ferrocenylimines were designed and prepared. They were efficient catalyst for Suzuki coupling reactions of aryl bromides and phenylboronic acid in neat water under ambient atmosphere. Among of these catalysts, the catalyst ( C2D ) could be reused for 6 times for the Suzuki coupling reaction of 4‐bromotoluene with phenylboronic acid in EtOH/H2O under ambient atmosphere, in which no significant loss activity of C2D was observed.  相似文献   

19.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

20.
The X‐ray structure determinations of the two title com­pounds, namely 7‐methyl‐7,17‐di­aza‐3,11‐diazo­niabi­cyclo[11.3.1]­hep­ta­deca‐1(17),13,15‐triene dichloride monohydrate, C14H26N42+·2Cl?·H2O, (I), and 7‐methyl‐17‐aza‐3,7,11‐triazo­niabi­cyclo­[11.3.1]­heptadeca‐1(17),13,15‐triene 2.826‐chloride 0.174‐nitrate, C14H27N43+·2.826Cl?·0.174NO3?, (II), are re­ported. Protonation occurs at the secondary amine N atoms in (I) and at all three amine N atoms in (II) to which the Cl? ions are linked via N—H?Cl hydrogen bonds. The macrocyclic hole is quite different in both structures, as is observed by comparing particularly the N3?N4 distances [2.976 (4) and 4.175 (4) Å for (I) and (II), respectively]. In (II), a Cl? ion alternates with an NO3? ion in a disordered structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号