首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The palladacycle complex [LsPdOAc]2 bearing 2‐phenyl benzothiazole was synthesized and characterized by NMR and X‐ray crystallography. [LsPdOAc]2 was used as a catalyst in the Suzuki–Miyaura cross coupling reaction of 4‐bromotoluene with phenylboronic acid, which resulted in a conversion of >90% with 5 mol% of the Pd complex within 10 min at 60°C.  相似文献   

2.
3.
胡荣华  陈桂琴  蔡明中 《中国化学》2007,25(12):1927-1931
(E)-α-Stannylvinyl phenyl(or p-tolyl)sulfones underwent an iododestannylation reaction to afford (E)-α-iodovinyl phenyl(or p-tolyl)sulfones 1, which reacted with (E)-alkenylzirconium(IV) complexes 2 produced in situ by hydrozirconation of terminal alkynes in the presence of a Pd(PPh3)4 catalyst to afford stereoselectively (1Z,3E)-2- phenyl(or p-tolyl)sulfonyl-substituted 1,3-dienes 3 in good yields.  相似文献   

4.
An easily prepared tetraphosphine N,N,N′,N′‐tetra(diphenylphosphinomethyl)‐1,2‐ethylenediamine (1) combined with PdCl2 affords an efficient catalytic system for Suzuki cross‐coupling of aryl and heteroaryl bromides. A high turnover number of 750 000 is obtained with the catalyst loading as low as 1 ppm. This catalyst system exhibits good stability and longevity. In this study, a broad scope of substrates is investigated and satisfactory yields are obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The purpose of this work was to synthesize and characterize a new magnetic polymer nanosphere‐supported palladium(II) acetate catalyst for reactions requiring harsh conditions. In this regard, an air‐stable, moisture‐stable and highly efficient heterogenized palladium was synthesized by the coordination of palladium(II) acetate with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐grafted modified magnetic nanoparticles with a core–shell structure. The structure of the newly developed catalyst was characterized using various techniques. The catalytic activity of the resultant nano‐organometallic catalyst was evaluated in Mizoroki–Heck and Suzuki–Miyaura reactions to afford the corresponding coupling products in good to excellent yields. High selectivity as well as outstanding turnover number (14 143, 4900) and turnover frequency (28 296, 7424) values were recorded for the catalyst in Suzuki–Miyaura and Mizoroki–Heck reactions, respectively. Magnetic separation and recycling of the catalyst for at least six runs became possible without any significant loss of efficiency or any detectable palladium leaching.  相似文献   

6.
The reaction of N‐methylimidazole (N‐MeIm) and N‐butylimidazole (N‐BuIm) with the complexes [PdCl2(PPh2py–P,N)] and [PdCl2(PPh2Etpy–P,N)] in the presence of NH4PF6 under N2 at room temperature afforded four new cationic Pd(II) complexes [PdCl(PPh2py–P,N)(N‐MeIm)](PF6) ( 1 ), [PdCl(PPh2py–P,N)(N‐BuIm)](PF6) ( 2 ), [PdCl(PPh2Etpy–P,N)(N‐MeIm)](PF6) ( 4 ) and [PdCl(PPh2Etpy‐P,N)(N‐BuIm)](PF6) ( 5 ) in good yields, where PPh2py is 2‐(diphenylphosphino)pyridine and PPh2Etpy is 2‐{2‐(diphenylphosphino)ethyl}pyridine). The complexes were fully characterized. The catalytic activities of these complexes were investigated for Suzuki–Miyaura cross‐coupling reactions at room temperature. Complex 2 exhibited excellent activity compared to other analogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A water‐soluble, cyclodextrin‐supported palladium complex (DACH‐Pd‐β‐CD) catalytic system was designed and synthesized, which can efficiently catalyze Suzuki–Miyaura cross‐coupling reactions between aryl halides and arylboronic acid in water under mild conditions. The catalyst was successfully characterized using the methods of transmission electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, thermogravimetric analysis, and Fourier transform infrared and NMR spectroscopies. Furthermore, the catalyst can be easily separated from the reaction mixture and still maintain high catalytic activity after ten cycles. No leaching of palladium into the reaction solution occurred. The advantages of green solvent (water), short reaction times (2–6 h), low catalyst loading (0.001 mol%), excellent yields (up to 99%) and reusability of the catalyst mean it will have potential applications in green chemical synthesis.  相似文献   

8.
The Suzuki–Miyaura reaction of aryl bromides with benzeneboronic acid catalyzed by bis(chloro)(2‐pyridylquinoxaline)palladium(II) was investigated. The scope of the bis(chloro)(2‐pyridylquinoxaline)palladium(II) was determined in toluene at 80 °C using KOH as base. Using a 0.1% molar ratio of bis(chloro)(2‐pyridylquinoxaline)palladium(II) C1 as a catalyst, aryl bromides reacted with benzeneboronic acid to afford diaryl derivatives in excellent yield. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
An easily prepared tetraphosphine N,N,N′,N′‐tetra(diphenylphosphinomethyl)‐1,2‐ethylenediamine (L1) associated with [Pd(η3‐C3H5)Cl]2 affords an efficient catalyst for Suzuki–Miyaura coupling of 3‐pyridineboronic acid with heteroaryl bromides. Reaction could be performed with as little as 0.02 mol% catalyst and a high turnover number of 2500 is obtained. A wide range of substrates is investigated with satisfactory yields, and good compatibility with aminogroup‐substituted pyridines and unprotected indole is exhibited. This protocol can also be applied successfully to the reaction of heteroaryl bromides with 3‐thiopheneboronic acid. This Pd‐tetraphosphine catalyst efficiently restrains the poisoning effect from heteroaryls, and shows good stability and longevity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A novel nanocatalyst was designed and prepared. Initially, the surface of magnetic graphene oxide (M‐GO) was modified using thionyl chloride, tris(hydroxymethyl)aminomethane and acryloyl chloride as linkers which provide reactive C═C bonds for the polymerization of vinylic monomers. Separately, β‐cyclodextrin (β‐CD) was treated with acryloyl chloride to provide a modified β‐CD. Then, in the presence methylenebisacrylamide as a cross‐linker, monomers of modified β‐CD and acrylamide were polymerized on the surface of the pre‐prepared M‐GO. Finally, palladium acetate and sodium borohydride were added to this composite to afford supported palladium nanoparticles. This fabricated nanocomposite was fully characterized using various techniques. The efficiency of this easily separable and reusable heterogeneous catalyst was successfully examined in Suzuki–Miyaura cross‐coupling reactions of aryl halides and boronic acid as well as in modified Suzuki–Miyaura cross‐coupling reactions of N‐acylsuccinimides and boronic acid in green media. The results showed that the nanocatalyst was efficient in coupling reactions for direct formation of the corresponding biphenyl as well as benzophenone derivatives in green media based on bio‐based solvents. In addition, the nanocatalyst was easily separable, using an external magnet, and could be reused several times without significant loss of activity under the optimum reaction conditions.  相似文献   

11.
The TiCl4‐mediated [3+3] cyclocondensation of various 1,3‐bis(trimethylsilyloxy)buta‐1,3‐dienes with 1‐chloro‐1,1‐difluoro‐4‐(trimethylsilyloxy)pent‐3‐en‐2‐one provides a regioselective access to novel 6‐(chlorodifluoromethyl)salicylates (=6‐(chlorodifluoromethyl)‐2‐hydroxybenzoates) with very good regioselectivity. For selected products, it was demonstrated that the CF2Cl group can be transformed to CF2H and CF2(Allyl) by free‐radical reactions.  相似文献   

12.
Stereospecific synthesis of a family of novel (E)‐2‐aryl‐1‐silylalka‐1,4‐dienes or (E)‐4‐aryl‐5‐silylpenta‐1,2,4‐trienes via a cross‐coupling of (Z)‐silyl(stannyl)ethenes with allyl halides or propargyl bromide is described. In the reaction with allyl bromide, either a Pd(dba)2? CuI combination (dba, dibenzylideneacetone) in DMF or copper(I) iodide in DMSO–THF readily catalyzes or mediates the coupling reaction of (Z)‐silyl(stannyl)ethenes at room temperature, producing novel vinylsilanes bearing an allyl group β to silicon with cis ‐disposition in good yields. Allyl chlorides as halides can be used in the CuI‐mediated reaction. CuI alone much more effectively mediates the cross‐coupling reaction with propargyl bromide in DMSO–THF at room temperature compared with a Pd(dba)2? CuI combination catalysis in DMF, providing novel stereodefined vinylsilanes bearing an allenyl group β to silicon with cis ‐disposition in good yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The Schiff base 1‐benzyl‐N ‐(3,5‐di‐tert ‐butylsalicylidene)piperidin‐4‐amine (HL) and its acetatopalladium(II) complex having the formula [Pd(L)(OAc)] were synthesized. Both HL and [Pd(L)(OAc)] were characterized using elemental analysis and various spectroscopic (infrared, UV–visible, 1H NMR and 13C NMR) and mass spectrometric measurements. The molecular structure of the complex was determined using X‐ray crystallographic analysis. In the complex, the pincer‐like NNO‐donor L and the monodenate OAc provide a distorted square‐planar N2O2 coordination environment around the metal centre. The physicochemical properties and the spectroscopic features of [Pd(L)(OAc)] are consistent with its molecular structure. The complex was found to be an effective catalyst for the Suzuki–Miyaura cross‐coupling reactions of hydroxyaryl halides with arylboronic acids in predominantly aqueous media. The reactions afforded hydroxybiaryl products in good to excellent yields with a wide substrate scope.  相似文献   

15.
An α‐diimine Pd(II) complex containing chiral sec‐phenethyl groups, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dichloropalladium (rac‐ C1 ), was synthesized and characterized. rac‐ C1 was applied as an efficient catalyst for the Suzuki–Miyaura cross‐coupling reaction between various aniline halides and arylboronic acid in PEG‐400–H2O at room temperature. Among a series of aniline halides, rac‐ C1 did not catalyze the cross‐coupling of aniline chlorides and fluorides but efficiently catalyzed the cross‐coupling of aniline bromides and iodides with phenylboronic acid. The catalytic activity reduced slightly with increasing steric hindrance of the aniline bromides. The complexes {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]‐2,3‐butadiene}dichloropalladium and {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]acenaphthene}dichloropalladium were also found to be efficient catalysts for the reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
蔡明中  章荣立赵红 《中国化学》2004,22(12):1417-1420
Based on the different reactivity of stannyl and bromo groups, (Z)-α-bromovinylstannanes can undergo the cross-coupling reaction with alkynyl Grignard reagents in the presence of tetrakis(triphenylphosphine)palladium(0) catalyst in THF at room temperature to afford stereoselectively 1,3-enynylstannanes in good yields.  相似文献   

17.
The compound comprises a 1Z,3E‐butadiene moiety substituted by two pinacol boronate functional groups. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A series of ordered mesoporous organic–inorganic hybrid material was designed by using the amine‐functionalized SBA‐15 (PdX2@SBA‐15/NY, Y = 1, 2) as solid support for palladium complexes. Among them, the Pd(OAc)2/ethylenediamine complex encapsulated into SBA‐15 (Pd(OAc)2@SBA‐15/PrEn or Pd(OAc)2@SBA‐15/PrNHEtNH2) exhibits higher activity and selectivity toward Suzuki cross‐coupling reaction under aerobic conditions and water solvent mixture. The SBA‐15/PrEn supported palladium pre‐catalyst could be separated easily from reaction products and used repetitively several times, showing its superiority over homogeneous catalysts for industrial and chemical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
As one of the most powerful and versatile methods for the construction of carbon–carbon bonds, the Suzuki–Miyaura cross‐coupling reaction has attracted great attention over the past three decades. In recent years, a huge amount of interest has been focused on the development of ligand‐free Suzuki–Miyaura reaction systems, which have the advantages of low cost, mild reaction conditions, and easy operation. So far, a number of ligand‐free Suzuki–Miyaura reaction systems have been developed by using simple palladium salts, nanopalladium, or supported palladium catalysts. In this account, we will review our recent research on the oxygen‐promoted ligand‐free Suzuki–Miyaura reaction. Interestingly, the oxygen‐promoting effect has been observed in different reaction media, including polyethylene glycol, organic/water mixed solvents and pure water. The oxygen‐promoted reaction systems demonstrate high efficiency for the construction of biaryls.

  相似文献   


20.
A series of Pd–N‐heterocyclic carbene (Pd–NHC) complexes were synthesized and characterized by elemental analysis and spectroscopic methods. In addition, the molecular structures of 3c and 4c were determined by X‐ray diffraction studies. Finally, the performance of complexes 3 and 5 were studied on Suzuki–Miyaura reactions of phenylboronic acid with aryl bromides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号