首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove rigorously the occurrence of zero-mode Bose–Einstein condensation for a class of continuous homogeneous systems of boson particles with superstable interactions. This is the first example of a translation invariant continuous Bose-system, where the existence of the Bose–Einstein condensation is proved rigorously for the case of non-trivial two-body particle interactions, provided there is a large enough one-particle excitations spectral gap. The idea of proof consists of comparing the system with specially tuned soluble models.  相似文献   

2.
We study the effect of electromagnetic radiation on the condensate of a Bose gas. In an earlier paper we considered the problem for two simple models showing the cooperative effect between Bose–Einstein condensation and superradiance. In this paper we formalize the model suggested by Ketterle et al. in which the Bose condensate particles have a two level structure. We present a soluble microscopic Dicke type model describing a thermodynamically stable system. We find the equilibrium states of the system and compute the thermodynamic functions giving explicit formulæ expressing the cooperative effect between Bose–Einstein condensation and superradiance.  相似文献   

3.
4.
We consider the interaction between an f-deformed Bose–Einstein condensate and a single-mode quantized light field. By using the Gardiner’s phonon operators, we find that there exists a natural deformation in the model which modifies the Bogoliubov approximation under the condition of large but finite number of particles in condensate. This approach introduces an intrinsically deformed Bose–Einstein condensate, where the deformation parameter, well-defined by the particle number N in condensate, controls the strength of the associated nonlinearity. By introducing the deformed Gardiner’s phonon operators we modify the very dilute-gas approximation through including atomic collisions in condensate. The rate of atomic collisions κ, as a new deformation parameter in the deformed Bose–Einstein condensate, controls the nonlinearity related to the atomic collisions. We show that by controlling the nonlinearities in the f-deformed atomic condensate through the two atomic parameters N and κ, it is possible to generate and manipulate the nonclassical quantum statistical properties of radiation field, such as, the sub-Poissonian photon statistics and quadrature squeezing. Also, it is possible to control the collapses and revivals phenomena in the average number of photons by atomic parameters N and κ.  相似文献   

5.
Form factors are derived for a model describing the coherent Josephson tunneling between two coupled Bose–Einstein condensates. This is achieved by studying the exact solution of the model with in the framework of the algebraic Bethe ansatz. In this approach the form factors are expressed through determinant representations which are functions of the roots of the Bethe ansatz equations.  相似文献   

6.
We investigate the dynamics of Bose–Einstein condensates in a quasi one-dimensional regime in a time-dependent trap and show analytically that it is possible to observe matter wave interference patterns in the intra-trap collision of two bright solitons by selectively tuning the trap frequency and scattering length.  相似文献   

7.
Quasi-set theory provides us a mathematical background for dealing with collections of indistinguishable elementary particles. In this paper, we show how to obtain the usual statistics (Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac) into the scope of quasi-set theory. We also show that, in order to derive Maxwell–Boltzmann statistics, it is not necessary to assume that the particles are distinguishable or individuals. In other words, Maxwell–Boltzmann statistics is possible even in an ensamble of indistinguishable particles, at least from the theoretical point of view. The main goal of this paper is to provide the mathematical grounds of a quasi-set theoretical framework for statistical mechanics.  相似文献   

8.
Recursion formulae of the N-particle partition function, the occupation numbers and its fluctuations are given using the single-particle partition function. Exact results are presented for fermions and bosons in a common one-dimensional harmonic oscillator potential, for the three-dimensional harmonic oscillator approximations are tested. Applications to excited nuclei and Bose–Einstein condensation are discussed.  相似文献   

9.
A quantum Langevin equation for the amplitudes of the collective modes in Bose–Einstein condensate is derived. The collective modes are coupled to a thermal reservoir of quasi-particles, whose elimination leads to the quantum Langevin equation. The dissipation rates are determined via the correlation function of the fluctuating force and are evaluated in the local-density approximation for the spectrum of quasi-particles and the Thomas–Fermi approximation for the condensate.I take great pleasure in dedicating this paper to Gregoire Nicolis on the occasion of his sixtieth birthday.  相似文献   

10.
A parametrization of the Bose–Einstein correlation function of pairs of identical pions produced in hadronic e+e annihilation is proposed within the framework of a model (the τ-model) in which space–time and momentum space are very strongly correlated. Using information from the Bose–Einstein correlations as well as from single-pion spectra, it is then possible to reconstruct the space–time evolution of pion production.  相似文献   

11.
The Hawking effect of Dirac particles in a variable-mass Kerr space-time is investigated by using a method called as the generalized tortoise coordinate transformation. The location and the temperature of the event horizon of the non-stationary Kerr black hole are derived. It is shown that the temperature and the shape of the event horizon depend not only on the time but also on the angle. However, the Fermi–Dirac spectrum displays a residual term which is absent from that of Bose–Einstein distribution.  相似文献   

12.
The wave packets, both linear and nonlinear (like solitons) signals described by a complex time-dependent function, are mapped onto positive probability distributions (tomograms). The quasidistributions, wavelets, and tomograms are shown to have an intrinsic connection. The analysis is extended to signals obeying to the von Neumann-like equation. For solitons (nonlinear signals) obeying the nonlinear Schrödinger equation, the tomographic probability representation is introduced. It is shown that in the probability representation the soliton satisfies a nonlinear generalization of the Fokker–Planck equation. Solutions to the Gross–Pitaevskii equation corresponding to solitons in a Bose–Einstein condensate are considered.  相似文献   

13.
In previous research, we showed that ‘texts that tell a story’ exhibit a statistical structure that is not Maxwell–Boltzmann but Bose–Einstein. Our explanation is that this is due to the presence of ‘indistinguishability’ in human language as a result of the same words in different parts of the story being indistinguishable from one another, in much the same way that ’indistinguishability’ occurs in quantum mechanics, also there leading to the presence of Bose–Einstein rather than Maxwell–Boltzmann as a statistical structure. In the current article, we set out to provide an explanation for this Bose–Einstein statistics in human language. We show that it is the presence of ‘meaning’ in ‘texts that tell a story’ that gives rise to the lack of independence characteristic of Bose–Einstein, and provides conclusive evidence that ‘words can be considered the quanta of human language’, structurally similar to how ‘photons are the quanta of electromagnetic radiation’. Using several studies on entanglement from our Brussels research group, we also show, by introducing the von Neumann entropy for human language, that it is also the presence of ‘meaning’ in texts that makes the entropy of a total text smaller relative to the entropy of the words composing it. We explain how the new insights in this article fit in with the research domain called ‘quantum cognition’, where quantum probability models and quantum vector spaces are used in human cognition, and are also relevant to the use of quantum structures in information retrieval and natural language processing, and how they introduce ‘quantization’ and ‘Bose–Einstein statistics’ as relevant quantum effects there. Inspired by the conceptuality interpretation of quantum mechanics, and relying on the new insights, we put forward hypotheses about the nature of physical reality. In doing so, we note how this new type of decrease in entropy, and its explanation, may be important for the development of quantum thermodynamics. We likewise note how it can also give rise to an original explanatory picture of the nature of physical reality on the surface of planet Earth, in which human culture emerges as a reinforcing continuation of life.  相似文献   

14.
The Bose–Einstein condensation (BEC) in a binary mixture of Bose gases is studied by means of the Cornwall–Jackiw–Tomboulis (CJT) effective action approach. The equations of state (EoS) and various scenarios of phase transitions of the system are considered in detail, in particular, the numerical computations are carried out for symmetry restoration (SR), symmetry nonrestoration (SNR) and inverse symmetry breaking (ISB) for getting an insight into their physical nature. It is shown that due to the cross interaction between distinct components of mixture there occur two interesting phenomena: the high temperature BEC and the inverse BEC, which could be tested in experiments.  相似文献   

15.
We propose the critical nonlinear Schrödinger equation with a harmonic potential as a model of attractive Bose–Einstein condensates. By an elaborate mathematical analysis we show that a sharp stability threshold exists with respect to the number of condensate particles. The value of the threshold agrees with the existing experimental data. Moreover with this threshold we prove that a ground state of the condensate exists and is orbital stable. We also evaluate the minimum of the condensate energy.  相似文献   

16.
We consider an exactly soluble model of two Bose–Einstein condensates with a Josephson-type of coupling. Its equilibrium states are explicitly found showing condensation and spontaneously broken gauge symmetry. It is proved that the total number and total phase fluctuation operators, as well as the relative number and relative current fluctuation operators form both a quantum canonical pair. The exact relation between the relative current and phase fluctuation operators is established. Also the dynamics of these operators is solved showing the collapse and revival phenomenon.  相似文献   

17.
Under some strong cutoff conditions on collision kernels, global existence, local stability, entropy identity, conservation of energy, and moment production estimates are proven for isotropic solutions of a modified (quantum effect) Boltzmann equation for spatially homogeneous gases of Bose–Einstein particles (BBE). Then applying these results with the biting-weak convergence, some results on the long-time behavior of the conservative isotropic solutions of the BBE equation are obtained, including the velocity concentration at very low temperatures and the tendency toward equilibrium states at very high temperatures.  相似文献   

18.
It is shown that there exist both dynamically stable and unstable dilute-gas Bose–Einstein condensates that, in the hydrodynamic limit, exhibit a behavior completely analogous to that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states. We illustrate these features in two qualitatively different one-dimensional models. We have also simulated the creation of a stable sonic black hole by solving the Gross–Pitaevskii equation numerically for a condensate subject to a trapping potential that is adiabatically deformed. A sonic black hole could in this way be created experimentally with state-of-the-art or planned technology.  相似文献   

19.
The effect of multi-particle Coulomb final state interactions on higher-order intensity correlations is determined in general, based on a scattering wave function which is a solution of the n-body Coulomb Schr?dinger equation in (a large part of) the asymptotic region of n-body configuration space. In particular, we study Coulomb effects on the n-particle Bose–Einstein correlation functions of similarly charged particles and remove a systematic error as big as 100% from higher-order multi-particle Bose–Einstein correlation functions. Received: 24 November 1999 / Published online: 17 March 2000  相似文献   

20.
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion–Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi–Dirac to Bose–Einstein statistics is realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号