首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferrosmectics and ferrohexagonals are magnetic liquid crystals which consist of a lamellar and a hexagonal phase in which magnetic nanoparticles are incorporated. The magnetic field variation and the relaxation of the linear optical birefringence of ferrosmectics and ferrohexagonals and its time relaxation are measured in different geometries and compared with that of a ferrofluid sample. We interpret our data by the existence of a mean orientation of the magnetic particles in the lyotropic structure, which appears to be non-random in zero field. We conclude that the magnetic moments of the particles are preferentially aligned in the plane of the ferrosmectic layers and along the axis of the ferrohexagonal cylinders, respectively. To account for this preferred alignment, we propose that some of the particles in the ferrosmectic are adsorbed on the surfactant layers with their moment aligned in the lamellar plane, while the orientation of the moments in the ferrohexagonal is restricted to a cone around the cylinder axis. Received 31 December 1998 and Received in final form 22 September 1999  相似文献   

2.
We describe and study by small-angle X-ray scattering (SAXS) a new type of hybrid system. It is composed of a swollen lyotropic hexagonal phase into the cylinders of which solid magnetic particles of nanometric size have been incorporated. It has been found to be stable for volume fractions of particles up to 2% provided the cylinders are sufficiently large. A unidimensionnal magnetic liquid is thus realized. The structural properties of this colloidal assembly have been investigated by SAXS, and the specific features of the scattering spectra are analysed and interpreted. One of the remarkable results is the evidence of depletion interactions between the particles and the inner walls of the cylinders inside which particles are located. Received: 4 September 1997 / Revised: 14 October 1997 / Accepted: 19 November 1997  相似文献   

3.
The magnetic phase diagram of the Fe2+ doped hexagonal ABX3 compound CsNi0.9Fe0.1Cl3 is investigated by heat capacity and magnetocaloric experiments. In spite of the high doping concentration, some phase boundaries appear surprisingly well-defined, while others are broadened significantly. The discussion of this behaviour clarifies the potentials and limitations of doping as a means to manipulate the effective anisotropy in quasi one-dimensional ABX3 compounds. Received 20 April 2001  相似文献   

4.
Using small angle neutron scattering we have been able to observe for the first time a well-defined vortex lattice (VL) structure both in the hole-doped LSCO and electron-doped NCCO superconductors. Our measurements on optimally doped LSCO reveal the existence of a magnetic field-induced phase transition from a hexagonal to a square coordination of the VL. Various scenarios to explain such phase transition are presented. In NCCO also a clear square VL could be detected, which is unexpectedly kept down to the lowest measurable magnetic fields.   相似文献   

5.
57Fe M?ssbauer effect studies of La1.65Eu0.20Sr0.15CuO4 doped with 0.5 at% 57Fe performed in the temperature region 300 K > T > 4.2 K give an onset temperature for magnetic ordering of K. This temperature practically is the same as that found in Nd doped La2-xSrxCuO4. It indicates that the magnetic ordering temperature in the LTT phase of rare earth (RE) doped La2-xSrxCuO4 is independent of the RE moment. The direction of the 57Fe magnetic moment in the magnetically ordered state is within the CuO2 plane, while it has been found to be parallel to the c-axis in Nd doped La2-xSrxCuO4. Received: 23 June 1998 / Accepted: 14 July 1998  相似文献   

6.
An expression for the energy of the magnetoelastic interaction of the exchange nature in magnetic structures and an analysis of the conditions when it is nonzero is presented. The effect of a magnetic field on these conditions is considered on the example of specific materials of hexagonal structures, and an important role of phase transitions on the magnetic field with the restructuring of the magnetic structure is noted.  相似文献   

7.
We study frequency- and wave-vector dependent charge correlations in weakly doped antiferromagnets using Mori-Zwanzig projection technique. The system is described by the two-dimensional t-J model. The ground state is expressed within a cumulant formalism which has been successfully applied to study magnetic properties of the weakly doped system. Within this approach the ground state contains independent spin-bag quasiparticles (magnetic polarons). We present results for the charge-density response function and for the optical conductivity at zero temperature for different values of t / J. They agree well with numerical results calculated by exact diagonalization techniques. The density response function for intermediate and large momenta shows a broad continuum on energy scales of order of several t whereas the optical conductivity for is dominated by low energy excitations (at 1.5-2J). We show that these weak-doping properties can be well understood by transitions between excited states of spin-bag quasiparticles. Received: 10 July 1997 / Revised: 19 March 1998 / Accepted: 3 April 1998  相似文献   

8.
Transparent pure and Fe-doped SnO2 thin films were grown by pulsed laser deposition technique on LaAlO3 substrates. X-ray diffraction shows that the films are polycrystalline and have the rutile structure. Surprisingly, the pure film presents magnetic-like behavior at room temperature with a saturated magnetization of almost one-third of the doped film (∼3.6 and 11.3 emu/g, respectively) and its magnetization could not be attributed to any impurity phase. Taking into account the magnetic moment measured in the pure film, the effective contribution of the impurity in the doped one can be inferred to be ∼2 μB per Fe atom. A large magnetic moment was also predicted by an ab initio calculation in the doped system, which increases if an oxygen vacancy is present near the Fe impurity.  相似文献   

9.
We study density of states and conductivity of the doped double-exchange system, treating interaction of charge carriers both with the localized spins and with the impurities in the coherent potential approximation. It is shown that under appropriate conditions there is a gap between the conduction band and the impurity band in paramagnetic phase, while the density of states is gapless in ferromagnetic phase. This can explain metal-insulator transition frequently observed in manganites and magnetic semiconductors. Activated conductivity in the insulator phase is numerically calculated. Received 13 June 2000 and Received in final form 5 January 2001  相似文献   

10.
We report the first observation of a nonreciprocal x-ray linear dichroism caused by the time-reversal odd, real part zeta of the complex gyrotropy tensor zeta(*) which is dominated by electric dipole-electric quadrupole E1E2 interference terms. A nonreciprocal transverse anisotropy was observed in the low temperature insulating phase of a Cr doped V2O3 Mott crystal when a single antiferromagnetic domain was grown by magnetoelectric annealing along the hexagonal c axis. This new element (edge) specific spectroscopy could nicely complement x-ray magnetic circular dichroism which is silent for antiferromagnetic materials.  相似文献   

11.
We have investigated the magnetic properties of trilayer films of Co–Ge–Co. At a fixed thickness of germanium of 3.5 nm, the formation and distribution of metastable amorphous and cubic phases depends on the thickness of the ferromagnetic layer. The portion of the stable hexagonal phase is affected, too. Possible mechanisms for forming the observed magnetic structure are discussed.  相似文献   

12.
Summary We present the results of the fixed-spin-moment, self-consistent LMTO electronic structure calculations for hexagonal phase of iron. The relative stability of the nonmagnetic and ferromagnetic phases is discussed along with the magnetic and mechanical equations of state. It is shown that hexagonal Fe is metamagnetic with the nonmagnetic ground state, but at a sufficiently large atomic volume the system prefers a ferromagnetic solution at rather low internal magnetic pressure. These findings seem to be well correlated with the properties of the hexagonal Fe that has recently been grown epitaxially on the Ru substrate.  相似文献   

13.
We present a detailed magnetic characterization of Cr and Mn doped InN films be means of superconducting quantum interference device magnetometry and X-ray magnetic circular dichroism. The InN:Cr films exhibit ferromagnetic behavior up to 300 K in a doping region from 2% to 8% without detectable phase segregation. The easy axis of magnetization is found to be in the film plane. On the contrary, Mn-doped films show signatures of phase segregation and paramagnetic behavior.  相似文献   

14.
Co doped SnO2 nanoparticles have been prepared via a wet chemical method with different precipitation processes. The structure and morphology of Co doped SnO2 nanoparticles demonstrate that the nanoparticles are in a rutile single phase and uniform, respectively. X-ray photoelectron spectroscopy shows that the Co dopants are in 2+ oxidation valence state and doped ∼2 atm% in SnO2 nanoparticles. Moreover, Raman spectroscopy further confirms that Co doped SnO2 nanoparticles have single phase crystallinity without forming any extra modes related to secondary phases. The magnetic measurements reveal that all nanoparticles exhibit room temperature ferromagnetism (RTFM) due to the presence of disorders and defects introduced by hydroxyls in the crystal structure. In addition, it has been clearly observed that the saturated magnetic moments are strongly affected by the precipitation processes which control the incorporation of hydroxyls into the lattice.  相似文献   

15.
Ferromagnetic spin chains of a hexagonal lattice coupled by a weak antiferromagnetic interaction J1 develop a helix arrangement if the intrachain antiferromagnetic NNN exchange J2 is sufficiently large. We show that the classical minimum energy spin configuration is an umbrella when an external magnetic field is applied. The scenario is dramatically changed by quantum fluctuations. Indeed we find that the zero point motion forces the spins in a plane containing the magnetic field so that classical expectation is deceptive for our model. Our result is obtained by controlled expansion in the low field-long wavelength modulation limit. Received: 9 September 1997 / Revised: 15 October 1997 / Accepted: 17 November 1997  相似文献   

16.
溶胶凝胶合成锰掺杂ZnO的室温磁性行为   总被引:2,自引:0,他引:2  
通过溶胶凝胶自燃法合成锰掺杂氧化锌纳米晶体, 研究了Mn掺杂ZnO稀磁半导体(简称DMS)的性质.X射线衍射光谱表明,锰掺杂氧化锌保留纤锌矿型状氧化锌六角晶体结构.采用能量色散X射线能谱和扫描电子显微镜分别对成分和形态进行研究.温度依赖的电阻率显示了DMS的半导体材料行为.振动样品磁强计测定的室温磁性行为,揭示了锰掺杂氧化锌的铁磁性和反磁性特性.  相似文献   

17.
The structure and magnetic properties of amorphous melt-spun and subsequently crystallized GdNiAl ribbons were investigated. An amorphous phase was formed after the quenching process by melt spinning with a copper wheel having a surface speed of 30 m/s. A hexagonal phase with lattice parameters a=7.023 ? and c=3.916 ? was formed in the GdNiAl ribbon after annealing above its crystallization temperature. Magnetic entropy change was calculated directly from isothermal magnetic measurements. The results show that both the amorphous and annealed samples have a high magnetocaloric effect, indicating that these alloys can be considered as candidates for magnetic refrigeration applications. Received: 14 August 2001 / Accepted: 18 September 2001 / Published online: 23 January 2002  相似文献   

18.
We report on the magnetic phase diagram of the distorted triangular-lattice antiferromagnet RbCuCl3 for a magnetic field applied parallel to the basal plane (). High-resolution measurements of the specific heat and of the magnetocaloric effect have been performed in magnetic fields up to 14 T. The high-field specific-heat data reveal the existence of an intermediate phase between the paramagnetic and the frustrated antiferromagnetic phase. Received 18 October 1999  相似文献   

19.
We study the magnetic field dependence of the dielectric response of large cylindrical molecules such as nanotubes. When a field-induced level crossing takes place, an applied electric field has two effects: it may cause a linear instead of the usual quadratic Stark effect or the difference in the quadratic Stark coefficient of the two levels leads to a discontinuity in the polarization. Explicit calculations are performed for doped nanotubes and a rich structure in the real part of the low-frequency dielectric function is found when a magnetic field is applied along the cylinder axis. It is suggested that studies of can serve as a spectroscopic tool for the investigation of large ring-shaped or cylindrical molecules. Received 11 January 2000 and Received in final form 19 May 2000  相似文献   

20.
The zero temperature phase diagram of a one-dimensional ferromagnet with cubic single ion anisotropy in an external magnetic field is studied. The mean-field approximation and the density-matrix renormalization group method are applied. Two phases at finite magnetic fields are identified: a canted phase with spontaneously broken symmetry and a phase with magnetization along the magnetic field. Both methods predict that the canted phase exists even for the single-ion anisotropy strong enough to destroy the magnetic order at zero magnetic field. In contrast to the mean-field theory, the density-matrix renormalization group predicts a reentrant behavior for the model. The character of the phase transition at finite magnetic field has also been considered and the critical index has been found. Received 9 May 2000 and Received in final form 5 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号