首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \({{\uppercase {\mathcal{p}}}} \) be the ordered set of isomorphism types of finite ordered sets (posets), where the ordering is by embeddability. We study first-order definability in this ordered set. We prove among other things that for every finite poset P, the set \(\{p,p^{\partial}\}\) is definable, where p and \(p^{\partial}\) are the isomorphism types of P and its dual poset. We prove that the only non-identity automorphism of \({{\uppercase {\mathcal{p}}}}\) is the duality map. Then we apply these results to investigate definability in the closely related lattice of universal classes of posets. We prove that this lattice has only one non-identity automorphism, the duality map; that the set of finitely generated and also the set of finitely axiomatizable universal classes are definable subsets of the lattice; and that for each member K of either of these two definable subsets, \(\{K,K^{\partial}\}\) is a definable subset of the lattice. Next, making fuller use of the techniques developed to establish these results, we go on to show that every isomorphism-invariant relation between finite posets that is definable in a certain strongly enriched second-order language \(\textup{\emph L}_2\) is, after factoring by isomorphism, first-order definable up to duality in the ordered set \({{\uppercase {\mathcal{p}}}}\). The language \(\textup{\emph L}_2\) has different types of quantifiable variables that range, respectively, over finite posets, their elements and order-relation, and over arbitrary subsets of posets, functions between two posets, subsets of products of finitely many posets (heteregenous relations), and can make reference to order relations between elements, the application of a function to an element, and the membership of a tuple of elements in a relation.  相似文献   

2.
In this paper, we show that if \({\mathcal {D}}\) is a non-trivial non-symmetric 2-(vk, 3) design admitting a flag-transitive point-primitive automorphism group G, then G must be an affine or almost simple group.  相似文献   

3.
Let ${{\mathcal D}}$ be the ordered set of isomorphism types of finite distributive lattices, where the ordering is by embeddability. We study first-order definability in this ordered set. We prove among other things that for every finite distributive lattice D, the set {d, d opp} is definable, where d and d opp are the isomorphism types of D and its opposite (D turned upside down). We prove that the only non-identity automorphism of ${{\mathcal D}}$ is the opposite map. Then we apply these results to investigate definability in the closely related lattice of universal classes of distributive lattices. We prove that this lattice has only one non-identity automorphism, the opposite map; that the set of finitely generated and also the set of finitely axiomatizable universal classes are definable subsets of the lattice; and that for each element K of the two subsets, {K, K opp} is a definable subset of the lattice.  相似文献   

4.
Let \({\mathcal{L}\subseteq \mathcal{L}^\prime}\) be first order languages, let \({R \in \mathcal{L}^\prime- \mathcal{L}}\) be a relation symbol, and let \({\mathcal{K}}\) be a class of \({\mathcal{L}^\prime}\)-structures. In this paper, we present semantical conditions equivalent to the existence of an \({\mathcal{L}}\)-formula \({\varphi(\vec{x})}\) such that \({\mathcal{K}\vDash \varphi(\vec{x}) \leftrightarrow R(\vec{x})}\), where \({\varphi}\) has a specific syntactical form (e.g., quantifier free, positive and quantifier free, existential Horn, etc.). For each of these definability results for relations, we also present an analogous version for the definability of functions. Several applications to natural definability questions in universal algebra have been included; most notably definability of principal congruences. The paper concludes with a look at term-interpolation in classes of structures with the same techniques used for definability. Here we obtain generalizations of two classical term-interpolation results: Pixley’s theorem for quasiprimal algebras, and the Baker–Pixley Theorem for finite algebras with a majority term.  相似文献   

5.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

6.
In this note, we find a monomial basis of the cyclotomic Hecke algebra \({\mathcal{H}_{r,p,n}}\) of G(r,p,n) and show that the Ariki-Koike algebra \({\mathcal{H}_{r,n}}\) is a free module over \({\mathcal{H}_{r,p,n}}\), using the Gröbner-Shirshov basis theory. For each irreducible representation of \({\mathcal{H}_{r,p,n}}\), we give a polynomial basis consisting of linear combinations of the monomials corresponding to cozy tableaux of a given shape.  相似文献   

7.
For a graph G and a set \({\mathcal{F}}\) of connected graphs, G is said be \({\mathcal{F}}\) -free if G does not contain any member of \({\mathcal{F}}\) as an induced subgraph. We let \({\mathcal{G} _{3}(\mathcal{F})}\) denote the set of all 3-connected \({\mathcal{F}}\) -free graphs. This paper is concerned with sets \({\mathcal{F}}\) of connected graphs such that \({\mathcal{F}}\) contains no star, \({|\mathcal{F}|=3}\) and \({\mathcal{G}_{3}(\mathcal{F})}\) is finite. Among other results, we show that for a connected graph T( ≠ K 1) which is not a star, \({\mathcal{G}_{3}(\{K_{4},K_{2,2},T\})}\) is finite if and only if T is a path of order at most 6.  相似文献   

8.
A digraph \({\overrightarrow{\mathcal{Pc}}(G)}\) is said to be the directed power graph on the conjugacy classes of a group G, if its vertices are the non-trivial conjugacy classes of G, and there is an arc from vertex C to C′ if and only if \({C \neq C'}\) and \({C \subseteqq {C'}^{m}}\) for some positive integer \({m > 0}\). Moreover, the simple graph \({\mathcal{Pc}(G)}\) is said to be the (undirected) power graph on the conjugacy classes of a group G if its vertices are the conjugacy classes of G and two distinct vertices C and C′ are adjacent in \({\mathcal{Pc}(G)}\) if one is a subset of a power of the other. In this paper, we find some connections between algebraic properties of some groups and properties of the associated graph.  相似文献   

9.
Let \({\mathcal{L}(X)}\) be the algebra of all bounded operators on a Banach space X. \({\theta:G\rightarrow \mathcal{L}(X)}\) denotes a strongly continuous representation of a topological abelian group G on X. Set \({\sigma^1(\theta(g)):=\{\lambda/|\lambda|,\lambda\in\sigma(\theta(g))\}}\), where σ(θ(g)) is the spectrum of θ(g) and \({\Sigma:=\{g\in G/\enskip\text{there is no} \enskip P\in \mathcal{P}/P\subseteq \sigma^1(\theta(g))\}}\), where \({\mathcal{P}}\) is the set of regular polygons of \({\mathbb{T}}\) (we call polygon in \({\mathbb{T}}\) the image by a rotation of a closed subgroup of \({\mathbb{T}}\), the unit circle of \({\mathbb{C}}\)). We prove here that if G is a locally compact and second countable abelian group, then θ is uniformly continuous if and only if Σ is non-meager.  相似文献   

10.
Let M be a left R-module, \({\mathcal{A}}\)be a family of some submodules of M and \({\mathcal{B}}\)be a family of some left R-modules. In this article, we introduce and characterize \({\mathcal{A}}\)-coherent, \({P\mathcal{A}}\), \({F\mathcal{A}}\), M-\({\mathcal{A}}\)-injective (flat) and strongly \({\mathcal{B}}\)-injective (flat) modules, which are generalizations of coherent, PS, FS, M-injective (flat) and strongly M-injective modules, respectively. We extend some known results to this general structure.  相似文献   

11.
We are interested in hereditary classes of graphs \({\mathcal {G}}\) such that every graph \(G \in {\mathcal {G}}\) satisfies \(\varvec{\chi }(G) \le \omega (G) + 1\), where \(\chi (G)\) (\(\omega (G)\)) denote the chromatic (clique) number of G. This upper bound is called the Vizing bound for the chromatic number. Apart from perfect graphs few classes are known to satisfy the Vizing bound in the literature. We show that if G is (\(P_6, S_{1, 2, 2}\), diamond)-free, then \(\chi (G) \le \omega (G)+1\), and we give examples to show that the bound is sharp.  相似文献   

12.
Let H be a real algebraic group acting equivariantly with finitely many orbits on a real algebraic manifold X and a real algebraic bundle \({\mathcal {E}}\) on X. Let \(\mathfrak {h}\) be the Lie algebra of H. Let \(\mathcal {S}(X,{\mathcal {E}})\) be the space of Schwartz sections of \({\mathcal {E}}\). We prove that \(\mathfrak {h}\mathcal {S}(X,{\mathcal {E}})\) is a closed subspace of \(\mathcal {S}(X,{\mathcal {E}})\) of finite codimension. We give an application of this result in the case when H is a real spherical subgroup of a real reductive group G. We deduce an equivalence of two old conjectures due to Casselman: the automatic continuity and the comparison conjecture for zero homology. Namely, let \(\pi \) be a Casselman–Wallach representation of G and V be the corresponding Harish–Chandra module. Then the natural morphism of coinvariants \(V_{\mathfrak {h}}\rightarrow \pi _{\mathfrak {h}}\) is an isomorphism if and only if any linear \(\mathfrak {h}\)-invariant functional on V is continuous in the topology induced from \(\pi \). The latter statement is known to hold in two important special cases: if H includes a symmetric subgroup, and if H includes the nilradical of a minimal parabolic subgroup of G.  相似文献   

13.
If \({\mathcal{G}}\) is an Abelian lattice-ordered (l-) group, then \({\mathcal{G}}\) is algebraically (existentially) closed just in case every finite system of l-group equations (equations and inequations), involving elements of \({\mathcal{G}}\), that is solvable in some Abelian l-group extending \({\mathcal{G}}\) is solvable already in \({\mathcal{G}}\). This paper establishes two systems of axioms for algebraically (existentially) closed Abelian l-groups, one more convenient for modeltheoretic applications and the other, discovered by Weispfenning, more convenient for algebraic applications. Among the model-theoretic applications are quantifierelimination results for various kinds of existential formulas, a new proof of the amalgamation property for Abelian l-groups, Nullstellensätze in Abelian l-groups, and the display of continuum-many elementary-equivalence classes of existentially closed Archimedean l-groups. The algebraic applications include demonstrations that the class of algebraically closed Abelian l-groups is a torsion class closed under arbitrary products, that the class of l-ideals of existentially closed Abelian l-groups is a radical class closed under binary products, and that various classes of existentially closed Abelian l-groups are closed under bounded Boolean products.  相似文献   

14.
Let \({\mathcal{R}}\) be a unital commutative ring and \({\mathcal{M}}\) be a 2-torsion free central \({\mathcal{R}}\) -bimodule. In this paper, for \({n \geqq 3}\), we show that every local derivation from M n (\({\mathcal{R}}\)) into M n (\({\mathcal{M}}\)) is a derivation.  相似文献   

15.
We generalise in three different directions two well-known results in universal algebra. Grätzer, Lakser and P?onka proved that independent subvarieties \({\mathcal{V}_{1}, \mathcal{V}_{2}}\) of a variety \({\mathcal{V}}\) are disjoint and such that their join \({\mathcal{V}_{1} \vee \mathcal{V}_{2}}\) (in the lattice of subvarieties of \({\mathcal{V}}\)) is their direct product \({\mathcal{V}_{1} \times \mathcal{V}_{2}}\) . Jónsson and Tsinakis provided a partial converse to this result: if \({\mathcal{V}}\) is congruence permutable and \({\mathcal{V}_{1}, \mathcal{V}_{2}}\) are disjoint, then they are independent (and so \({\mathcal{V}_{1} \vee \mathcal{V}_{2} = \mathcal{V}_{1} \times \mathcal{V}_{2}}\)). We show that (i) if \({\mathcal{V}}\) is subtractive, then Jónsson’s and Tsinakis’ result holds under some minimal assumptions; (ii) if \({\mathcal{V}}\) satisfies some weakened permutability conditions, then disjointness implies a generalised notion of independence and \({\mathcal{V}_{1} \vee \mathcal{V}_{2}}\) is the subdirect product of \({\mathcal{V}_{1}}\) and \({\mathcal{V}_2}\) ; (iii) the same holds if \({\mathcal{V}}\) is congruence 3-permutable.  相似文献   

16.
We investigate the Baire category of \({\mathcal{I}}\)-convergent subsequences and rearrangements of a divergent sequence s = (sn) of reals if \({\mathcal{I}}\) is an ideal on \({\mathbb{N}}\) having the Baire property. We also discuss the measure of the set of \({\mathcal{I}}\)-convergent subsequences for some classes of ideals on \({\mathbb{N}}\). Our results generalize theorems due to H. Miller and C. Orhan [16].  相似文献   

17.
Let M be a smooth compact oriented Riemannian manifold, and let Δ M be the Laplace–Beltrami operator on M. Say \({0 \neq f \in \mathcal{S}(\mathbb {R}^+)}\) , and that f (0)  =  0. For t  >  0, let K t (x, y) denote the kernel of f (t 2 Δ M ). We show that K t is well-localized near the diagonal, in the sense that it satisfies estimates akin to those satisfied by the kernel of the convolution operator f (t 2Δ) on \({\mathbb {R}^n}\) . We define continuous \({\mathcal {S}}\)-wavelets on M, in such a manner that K t (x, y) satisfies this definition, because of its localization near the diagonal. Continuous \({\mathcal {S}}\)-wavelets on M are analogous to continuous wavelets on \({\mathbb {R}^n}\) in \({\mathcal {S}}\) (\({\mathbb {R}^n}\)). In particular, we are able to characterize the Hölder continuous functions on M by the size of their continuous \({\mathcal {S}}\)-wavelet transforms, for Hölder exponents strictly between 0 and 1. If M is the torus \({\mathbb T^2}\) or the sphere S 2, and f (s)  =  se ?s (the “Mexican hat” situation), we obtain two explicit approximate formulas for K t , one to be used when t is large, and one to be used when t is small.  相似文献   

18.
For a family \(\mathcal {F}\) of graphs, a graph U is induced-universal for \({\mathcal{F}}\) if every graph in \({\mathcal{F}}\) is an induced subgraph of U. We give a construction for an induced-universal graph for the family of graphs on n vertices with degree at most r, which has \(Cn^{\lfloor (r+1)/2\rfloor}\) vertices and \(Dn^{2\lfloor (r+1)/2\rfloor -1}\) edges, where C and D are constants depending only on r. This construction is nearly optimal when r is even in that such an induced-universal graph must have at least cn r/2 vertices for some c depending only on r.Our construction is explicit in that no probabilistic tools are needed to show that the graph exists or that a given graph is induced-universal. The construction also extends to multigraphs and directed graphs with bounded degree.  相似文献   

19.
We study the local Hecke algebra \({\mathcal{H}_{G}(K)}\) for \({G = {\rm GL}_{n}}\) and K a non-archimedean local field of characteristic zero. We show that for \({G = {\rm GL}_{2}}\) and any two such fields K and L, there is a Morita equivalence \({\mathcal{H}_{G}(K) \sim_{M} \mathcal{H}_{G}(L)}\), by using the Bernstein decomposition of the Hecke algebra and determining the intertwining algebras that yield the Bernstein blocks up to Morita equivalence. By contrast, we prove that for \({G = {\rm GL}_{n}}\), there is an algebra isomorphism \({\mathcal{H}_{G}(K) \cong \mathcal{H}_{G}(L)}\) which is an isometry for the induced \({L^1}\)-norm if and only if there is a field isomorphism \({K \cong L}\).  相似文献   

20.
The aim of this paper is to study the problem of which solvable Lie groups admit an Einstein left invariant metric. The space \({\mathcal{N}}\) of all nilpotent Lie brackets on \({\mathbb{R}^n}\) parametrizes a set of (n + 1)-dimensional rank-one solvmanifolds \({\{S_{\mu}:\mu\in\mathcal{N}\}}\), containing the set of all those which are Einstein in that dimension. The moment map for the natural GL n -action on \({\mathcal{N}}\), evaluated at \({\mu\in\mathcal{N}}\), encodes geometric information on S μ and suggests the use of strong results from geometric invariant theory. For instance, the functional on \({\mathcal{N}}\) whose critical points are precisely the Einstein S μ ’s, is the square norm of this moment map. We use a GL n -invariant stratification for the space \({\mathcal{N}}\) and show that there is a strong interplay between the strata and the Einstein condition on the solvmanifolds S μ . As an application, we obtain criteria to decide whether a given nilpotent Lie algebra can be the nilradical of a rank-one Einstein solvmanifold or not. We find several examples of \({\mathbb{N}}\)-graded (even 2-step) nilpotent Lie algebras which are not. A classification in the 7-dimensional, 6-step case and an existence result for certain 2-step algebras associated to graphs are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号