首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
For any prime p and positive integers c, d there is up to isomorphism a unique p-group \({G_{d}^{c}(p)}\) of least order having any (finite) p-group G with rank \({d(G) \le d}\) and Frattini class \({c_{p}(G) \le c}\) as epimorphic image. Here \({c_{p}(G) = n}\) is the least positive integer such that G has a central series of length n with all factors being elementary. This “disposition” p-group \({G_{d}^{c}(p)}\) has been examined quite intensively in the literature, sometimes controversially. The objective of this paper is to present a summary of the known facts, and to add some new results. For instance we show that for \({G = G_{d}^{c}(p)}\) the centralizer \({C_{G}(x) = \langle Z(G), x \rangle}\) whenever \({x \in G}\) is outside the Frattini subgroup, and that for odd p and \({d \ge 2}\) the group \({E = G_{d}^{c+1}(p)/(G_{d}^{c+1}(p))^{p^{c}}}\) is a distinguished Schur cover of G with \({E/Z(E) \cong G}\). We also have a fibre product construction of \({G_{d}^{c+1}(p)}\) in terms of \({G = G_{d}^{c}(p)}\) which might be of interest for Galois theory.  相似文献   

2.
Given numbers \({n,s \in \mathbb{N}}\), \({n \geq 2}\), and the \({n}\)th-degree monic Chebyshev polynomial of the first kind \({\widehat T_n(x)}\), the polynomial system “induced” by \({\widehat T_n(x)}\) is the system of orthogonal polynomials \({\{p_{k}^{n,s} \}}\) corresponding to the modified measure \({d \sigma^{n,s}(x)=\widehat T^{2s}_n(x) d\sigma(x)}\), where \({d\sigma(x)=1/\sqrt{1-x^{2}}dx}\) is the Chebyshev measure of the first kind. Here we are concerned with the problem of determining the coefficients in the three-term recurrence relation for the polynomials \({p^{n,s}_{k}}\). The desired coefficients are obtained analytically in a closed form.  相似文献   

3.
Let \({\Sigma_r}\) be the symmetric group acting on \({r}\) letters, \({K}\) be a field of characteristic 2, and \({\lambda}\) and \({\mu}\) be partitions of \({r}\) in at most two parts. Denote the permutation module corresponding to the Young subgroup \({\Sigma_\lambda}\), in \({\Sigma_r}\), by \({M^\lambda}\), and the indecomposable Young module by \({Y^\mu}\). We give an explicit presentation of the endomorphism algebra \({{\rm End}_{k[\Sigma_r]}(Y^\mu)}\) using the idempotents found by Doty et al. (J Algebra 307(1):377–396, 2007).  相似文献   

4.
A sufficient criterion for the map \({C_{A, B}(S) = ASB}\) to be supercyclic on certain algebras of operators on Banach spaces is given. If T is an operator satisfying the Supercyclicity Criterion on a Hilbert space H, then the linear map \({C_{T}(V) = TVT^*}\) is shown to be norm-supercyclic on the algebra \({\mathcal{K}(H)}\) of all compact operators, COT-supercyclic on the real subspace \({\mathcal{S}(H)}\) of all self-adjoint operators and weak*-supercyclic on \({\mathcal{L}(H)}\) of all bounded operators on H. Examples including operators of the form \({C_{B_w, F_\mu}}\) are provided, where Bw and \({F_\mu}\) are respectively backward and forward shifts on Banach sequence spaces.  相似文献   

5.
For every finite measure \({\mu}\) on \({{\mathbb{R}}^n}\) we define a decomposability bundle \({V(\mu,\,\cdot)}\) related to the decompositions of \({\mu}\) in terms of rectifiable one-dimensional measures. We then show that every Lipschitz function on \({{\mathbb{R}}^n}\) is differentiable at \({\mu}\)-a.e. \({x}\) with respect to the subspace \({V(\mu,\,x)}\), and prove that this differentiability result is optimal, in the sense that, following (Alberti et al., Structure of null sets, differentiability of Lipschitz functions, and other problems, 2016), we can construct Lipschitz functions which are not differentiable at \({\mu}\)-a.e. \({x}\) in any direction which is not in \({V(\mu,\,x)}\). As a consequence we obtain a differentiability result for Lipschitz functions with respect to (measures associated to) \({k}\)-dimensional normal currents, which we use to extend certain basic formulas involving normal currents and maps of class \({C^1}\) to Lipschitz maps.  相似文献   

6.
We study the local Hecke algebra \({\mathcal{H}_{G}(K)}\) for \({G = {\rm GL}_{n}}\) and K a non-archimedean local field of characteristic zero. We show that for \({G = {\rm GL}_{2}}\) and any two such fields K and L, there is a Morita equivalence \({\mathcal{H}_{G}(K) \sim_{M} \mathcal{H}_{G}(L)}\), by using the Bernstein decomposition of the Hecke algebra and determining the intertwining algebras that yield the Bernstein blocks up to Morita equivalence. By contrast, we prove that for \({G = {\rm GL}_{n}}\), there is an algebra isomorphism \({\mathcal{H}_{G}(K) \cong \mathcal{H}_{G}(L)}\) which is an isometry for the induced \({L^1}\)-norm if and only if there is a field isomorphism \({K \cong L}\).  相似文献   

7.
We prove a Beurling-Blecher-Labuschagne theorem for \({H^\infty}\)-invariant spaces of \({L^p(\mathcal{M},\tau)}\) when \({0 < p \leq\infty}\), using Arveson’s non-commutative Hardy space \({H^\infty}\) in relation to a von Neumann algebra \({\mathcal{M}}\) with a semifinite, faithful, normal tracial weight \({\tau}\). Using the main result, we are able to completely characterize all \({H^\infty}\)-invariant subspaces of \({L^p(\mathcal{M} \rtimes_\alpha \mathbb{Z},\tau)}\), where \({\mathcal{M} \rtimes_\alpha \mathbb{Z} }\) is a crossed product of a semifinite von Neumann algebra \({\mathcal{M}}\) by the integer group \({\mathbb{Z}}\), and \({H^\infty}\) is a non-selfadjoint crossed product of \({\mathcal{M}}\) by \({\mathbb{Z}^+}\). As an example, we characterize all \({H^\infty}\)-invariant subspaces of the Schatten p-class \({S^p(\mathcal{H})}\), where \({H^\infty}\) is the lower triangular subalgebra of \({B(\mathcal{H})}\), for each \({0 < p \leq\infty}\).  相似文献   

8.
A sequence A of nonnegative integers is called complete if all sufficiently large integers can be represented as the sum of distinct terms taken form A. For a sequence \({S=\{s_{1}, s_{2}, \dots\}}\) of positive integers and a positive real number α, let S α denote the sequence \({\{\lfloor\alpha s_{1}\rfloor, \lfloor\alpha s_{2}\rfloor, \dots\}}\), where \({\lfloor x \rfloor}\) denotes the greatest integer not greater than x. Let \({{U_S = \{\alpha \mid S_\alpha} \, is complete\}}\). Hegyvári [6] proved that if \({\lim_{n\to\infty} (s_{n+1}-s_{n})=+ \infty}\), \({s_{n+1} < \gamma s_{n}}\) for all integers \({n \geqq n_{0}}\), where \({1 < \gamma < 2}\), and \({U_{S}\ne\emptyset}\), then \({\mu(U_{S}) > 0}\), where \({\mu(U_{S})}\) is the Lebesgue measure of U S . Yong-Gao Chen and the first author [4] proved that, if \({s_{n+1} < \gamma s_{n}}\) for all integers \({n \geqq n_{0}}\), where \({1 < \gamma \leqq 7/4=1.75}\), then \({\mu(U_{S}) > 0}\). In this paper, we prove that the conclusion holds for \({1 < \gamma \leqq \sqrt[4]{13}=1.898\dots\;}\).  相似文献   

9.
Let \({{\|\cdot\|}}\) be a norm on \({\mathbb{R}^n}\) and \({\|.\|_*}\) be the dual norm. If \({\|\cdot\|}\) has a normalized 1-symmetric basis \({\{e_i\}_{i=1}^n}\) then the following inequalities hold: for all \({x,y\in \mathbb{R}^n}\), \({\|x\|\cdot\|y\|_*\le \max(\|x\|_1\cdot\|y\|_\infty,\|x\|_\infty\cdot\|y\|_1)}\) and if the basis is only 1-unconditional and normalized then for all \({x \in \mathbb{R}^n}\) , \({\|x\|+\|x\|_{*}\leq \|x\|_1+\|x\|_\infty}\) . We consider other geometric generalizations and apply these results to get, as a special case, estimates on best random embeddings of k-dimensional Hilbert spaces in the spaces of nuclear operators \({{\mathcal N}(K,K)}\) of dimension n 2, for all k = [λn 2] and 0 < λ < 1. We obtain universal upper bounds independent on the 1-symmetric norm \({\|.\|}\) for the products of pth moments
$\left( {\mathbb{E}} \left\|\sum_{i=1}^n f_i(\omega)\,e_i\right\|^p\cdot\, \mathbb {E} \left\|\sum_{i=1}^n f_i(\omega)\,e_i\right\|_*^p\right)^{1/p}$
for independent random variables {f i (ω)}, and 1 ≤ p < ∞.
  相似文献   

10.
Let \(\bar{p}(n)\) denote the number of overpartitions of \(n\). Recently, Fortin–Jacob–Mathieu and Hirschhorn–Sellers independently obtained 2-, 3- and 4-dissections of the generating function for \(\bar{p}(n)\) and derived a number of congruences for \(\bar{p}(n)\) modulo 4, 8 and 64 including \(\bar{p}(8n+7)\equiv 0 \pmod {64}\) for \(n\ge 0\). In this paper, we give a 16-dissection of the generating function for \(\bar{p}(n)\) modulo 16 and show that \(\bar{p}(16n+14)\equiv 0\pmod {16}\) for \(n\ge 0\). Moreover, using the \(2\)-adic expansion of the generating function for \(\bar{p}(n)\) according to Mahlburg, we obtain that \(\bar{p}(\ell ^2n+r\ell )\equiv 0\pmod {16}\), where \(n\ge 0\), \(\ell \equiv -1\pmod {8}\) is an odd prime and \(r\) is a positive integer with \(\ell \not \mid r\). In particular, for \(\ell =7\) and \(n\ge 0\), we get \(\bar{p}(49n+7)\equiv 0\pmod {16}\) and \(\bar{p}(49n+14)\equiv 0\pmod {16}\). We also find four congruence relations: \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n) \pmod {16}\) for \(n\ge 0\), \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {32}\) where \(n\) is not a square of an odd positive integer, \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {64}\) for \(n\not \equiv 1,2,5\pmod {8}\) and \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {128}\) for \(n\equiv 0\pmod {4}\).  相似文献   

11.
The purpose of this work is to classify, for given integers \({m,\, n\geq 1}\), the bordism class of a closed smooth \({m}\)-manifold \({X^m}\) with a free smooth involution \({\tau}\) with respect to the validity of the Borsuk–Ulam property that for every continuous map \({\phi : X^m \to \mathbb{R}^n}\) there exists a point \({x\in X^m}\) such that \({\phi (x)=\phi (\tau (x))}\). We will classify a given free \({\mathbb{Z}_2}\)-bordism class \({\alpha}\) according to the three possible cases that (a) all representatives \({(X^m, \tau)}\) of \({\alpha}\) satisfy the Borsuk–Ulam property; (b) there are representatives \({({X_{1}^{m}}, \tau_1)}\) and \({({X_{2}^{m}}, \tau_2)}\) of \({\alpha}\) such that \({({X_{1}^{m}}, \tau_1)}\) satisfies the Borsuk–Ulam property but \({({X_{2}^{m}}, \tau_2)}\) does not; (c) no representative \({(X^m, \tau)}\) of \({\alpha}\) satisfies the Borsuk–Ulam property.  相似文献   

12.
In this work we study the following class of problems in \({\mathbb R^{N}, N > 2s}\)
$$\varepsilon^{2s}(-\Delta)^{s}u + V(z)u = f(u), \,\,\,u(z) > 0$$
where \({0 < s < 1}\), \({(-\Delta)^{s}}\) is the fractional Laplacian, \({\varepsilon}\) is a positive parameter, the potential \({V : \mathbb{R}^N \to \mathbb{R}}\) and the nonlinearity \({f : \mathbb R \to \mathbb R}\) satisfy suitable assumptions; in particular it is assumed that \({V}\) achieves its positive minimum on some set \({M.}\) By using variational methods we prove existence and multiplicity of positive solutions when \({\varepsilon \to 0^{+}}\). In particular the multiplicity result is obtained by means of the Ljusternick-Schnirelmann and Morse theory, by exploiting the “topological complexity” of the set \({M}\).
  相似文献   

13.
Call a set \({A \subseteq \mathbb {R}}\)paradoxical if there are disjoint \({A_0, A_1 \subseteq A}\) such that both \({A_0}\) and \({A_1}\) are equidecomposable with \({A}\) via countabbly many translations. \({X \subseteq \mathbb {R}}\) is hereditarily nonparadoxical if no uncountable subset of \({X}\) is paradoxical. Penconek raised the question if every hereditarily nonparadoxical set \({X \subseteq \mathbb {R}}\) is the union of countably many sets, each omitting nontrivial solutions of \({x - y = z - t}\). Nowik showed that the answer is ‘yes’, as long as \({|X| \leq \aleph_\omega}\). Here we show that consistently there exists a counterexample of cardinality \({\aleph_{\omega+1}}\) and it is also consistent that the continuum is arbitrarily large and Penconek’s statement holds for any \({X}\).  相似文献   

14.
For a new class of g(t, x), the existence, uniqueness and stability of \({2\pi}\)-periodic solution of Duffing equation \({x'' + cx' + g(t, x) = h(t)}\) are presented. Moreover, the unique \({2\pi}\)-periodic solution is (exponentially asymptotically stable) and its rate of exponential decay c/2 is sharp. The new criterion characterizes \({g_{x}^{\prime}(t, x) - c^2/4}\) with L p -norms \({(p \in [1, \infty])}\), and the classical criterion employs the \({L^{\infty}}\)-norm. The advantage is that we can deal with the case that \({g_{x}^{\prime}(t, x) - c^2/4}\) is beyond the optimal bounds of the \({L^{\infty}}\)-norm, because of the difference between the L p -norm and the \({L^{\infty}}\)-norm.  相似文献   

15.
Let \({{\mathbb{R}}}\) and Y be the set of real numbers and a Banach space respectively, and \({f, g :{\mathbb{R}} \to Y}\). We prove the Ulam-Hyers stability theorems for the Pexider-quadratic functional equation \({f(x + y) + f(x - y) = 2f(x) + 2g(y)}\) and the Drygas functional equation \({f(x + y) + f(x - y) = 2f(x) + f(y) + f(-y)}\) in the restricted domains of form \({\Gamma_d := \Gamma \cap \{(x, y) \in {\mathbb{R}}^2 : |x| + |y| \ge d\}}\), where \({\Gamma}\) is a rotation of \({B \times B \subset {\mathbb{R}}^2}\) and \({B^c}\) is of the first category. As a consequence we obtain asymptotic behaviors of the equations in a set \({\Gamma_d \subset {\mathbb{R}}^2}\) of Lebesgue measure zero.  相似文献   

16.
We show that on every Ramanujan graph \({G}\), the simple random walk exhibits cutoff: when \({G}\) has \({n}\) vertices and degree \({d}\), the total-variation distance of the walk from the uniform distribution at time \({t=\frac{d}{d-2} \log_{d-1} n + s\sqrt{\log n}}\) is asymptotically \({{\mathbb{P}}(Z > c \, s)}\) where \({Z}\) is a standard normal variable and \({c=c(d)}\) is an explicit constant. Furthermore, for all \({1 \leq p \leq \infty}\), \({d}\)-regular Ramanujan graphs minimize the asymptotic \({L^p}\)-mixing time for SRW among all \({d}\)-regular graphs. Our proof also shows that, for every vertex \({x}\) in \({G}\) as above, its distance from \({n-o(n)}\) of the vertices is asymptotically \({\log_{d-1} n}\).  相似文献   

17.
We use the variational concept of \({\Gamma}\)-convergence to prove existence, stability and exhibit the geometric structure of four families of stationary solutions to the singularly perturbed parabolic equation \({u_t=\epsilon^2 {\rm div}(k\nabla u)+f(u,x)}\), for \({(t,x)\in \mathbb{R}^+\times\Omega}\), where \({\Omega\subset\mathbb{R}^n}\), \({n\geq 1}\), supplied with no-flux boundary condition. The novelty here lies in the fact that the roots of the bistable function f are not isolated, meaning that the graphs of its roots are allowed to have contact or intersect each other along a Lipschitz-continuous (n ? 1)-dimensional hypersurface \({\gamma \subset \Omega}\); across this hypersurface, the stable equilibria may have corners. The case of intersecting roots stems from the phenomenon known as exchange of stability which is characterized by \({f(\cdot,x)}\) having only two roots.  相似文献   

18.
A string is a pair \({(L, \mathfrak{m})}\) where \({L \in[0, \infty]}\) and \({\mathfrak{m}}\) is a positive, possibly unbounded, Borel measure supported on [0, L]; we think of L as the length of the string and of \({\mathfrak{m}}\) as its mass density. To each string a differential operator acting in the space \({L^2(\mathfrak{m})}\) is associated. Namely, the Kre?n–Feller differential operator \({-D_{\mathfrak{m}}D_x}\) ; its eigenvalue equation can be written, e.g., as
$$f^{\prime}(x) + z \int_0^L f(y)\,d\mathfrak{m}(y) = 0,\quad x \in\mathbb R,\ f^{\prime}(0-) = 0.$$
A positive Borel measure τ on \({\mathbb R}\) is called a (canonical) spectral measure of the string \({\textsc S[L, \mathfrak{m}]}\) , if there exists an appropriately normalized Fourier transform of \({L^2(\mathfrak{m})}\) onto L 2(τ). In order that a given positive Borel measure τ is a spectral measure of some string, it is necessary that: (1) \({\int_{\mathbb R} \frac{d\tau(\lambda)}{1+|\lambda|} < \infty}\) . (2) Either \({{\rm supp} \tau \subseteq [0, \infty)}\) , or τ is discrete and has exactly one point mass in (?∞, 0). It is a deep result, going back to Kre?n in the 1950’s, that each measure with \({\int_{\mathbb R}\frac{d\tau(\lambda)}{1+|\lambda|} < \infty}\) and \({{\rm supp} \tau \subseteq [0, \infty)}\) is a spectral measure of some string, and that this string is uniquely determined by τ. The question remained open, which conditions characterize whether a measure τ with \({{\rm supp} \tau \not\subseteq [0, \infty)}\) is a spectral measure of some string. In the present paper, we answer this question. Interestingly, the solution is much more involved than the first guess might suggest.
  相似文献   

19.
In this paper, we study a class of nonlinear Schrödinger equations involving the half Laplacian and critical growth. We assume that the potential of the nonlinear Schrödinger equation includes a parameter \({\lambda}\). Moreover, the potential behaves like a potential well when the parameter \({\lambda}\) is large. Using variational methods, combining Nehari methods, we prove that the equation has a least energy solution which, for \({\lambda}\) large, localizes near the bottom of the potential well. Moreover, if the zero set int \({V^{-1}(0)}\) of \({V(x)}\) includes more than one isolated component, then \({u_{\lambda}(x)}\) will be trapped around all the isolated components. However, in Laplacian case when \({s = 1}\), for \({\lambda}\) large, the corresponding least energy solution will be trapped around only one isolated component and will become arbitrary small in other components of int \({V^{-1}(0)}\). This is the essential difference with the Laplacian problems since the operator \({(- \Delta)^{1/2}}\) is nonlocal.  相似文献   

20.
We consider a broad class of linear Perron–Frobenius operators \({\Lambda:X \rightarrow X}\), where \({X}\) is a real Banach space of \({C^m}\) functions. We prove the existence of a strictly positive \({C^m}\) eigenvector \({v}\) with eigenvalue \({r=r(\Lambda) =}\) the spectral radius of \({\Lambda}\). We prove (see Theorem 6.5 in Sect. 6 of this paper) that \({r(\Lambda)}\) is an algebraically simple eigenvalue and that, if \({\sigma(\Lambda)}\) denotes the spectrum of the complexification of \({\Lambda,\sigma(\Lambda) \backslash \{r(\Lambda)\}\subseteq \{\zeta \in \mathbb{C} \big| |\zeta| \le r_*\}}\), where \({r_* < r(\Lambda)}\). Furthermore, if \({u \in X}\) is any strictly positive function, \({(\frac 1r \Lambda)^k(u) \rightarrow s_u v}\) as \({k \rightarrow \infty}\), where \({s_u > 0}\) and convergence is in the norm topology on \({X}\). In applications to the computation of Hausdorff dimension, one is given a parametrized family \({\Lambda_s,s > s_*}\), of such operators and one wants to determine the (unique) value \({s_0}\) such that \({r(\Lambda_{s_0})=1}\). In another paper (Falk and Nussbaum in C\({^{\rm m}}\) Eigenfunctions of Perron–Frobenius operators and a new approach to numerical computation of Hausdorff dimension, submitted) we prove that explicit estimates on the partial derivatives of the positive eigenvector \({v_s}\) of \({\Lambda_s}\) can be obtained and that this information can be used to give rigorous, sharp upper and lower bounds for \({s_0}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号